The Temporal Effects of *Ulex europaeus* on Soil Properties, Modeling Impact of Invasive Species with Respect to Time, and Possible Consequences of Soil Property Changes

Bronwyn Scott & Sarah E. Reichard University of Washington Meeting the Challenge: Invasive Plants in PNW Ecosystems Seattle, Washington Sept. 2006

Invasives Weeds or Plants

- A crisis in important economic areas such as forestry and agriculture
- US GAO 2005 report states:
 - US federal agencies spend \$40 million on control activities for non-agricultural lands
 - 47 million acres of federal lands infested with invasive weeds
 - 133 million acres are infested across the whole US

Impact

- Impact describes the consequences of invasion
- Usually split into economics and ecological impacts
- Need to be able to better quantify ecological invasion effects in order to better prioritize:
 - Research
 - Management
 - Legislation

Current Research on Invasives

- Emphasis has been on effects at multiple levels (spatial scales):
 - Population
 - Community
 - Ecosystem
- At a single point in time...
- But what about temporal effects?
- Some invasive plants can continue to have ecosystem effects

General Purpose of Study

- Examine an invasive plant's ability to alter soil properties
- Assess current status of impact modeling in invasive plant ecology

So, why gorse?

Ulex europaeus = gorse, furze & whin

- Native to Western Europe
- Invasive in Australia, New Zealand, Chile, Hawaii, and the Western and Eastern coasts of North America
- Perennial in Fabaceae (legume)
- Dense, spiny, grows to 4 meters
- Closely related to *Cytisus scoparius* (Scot's broom)

Picturesque Gorse

Pictures courtesy of the USDA

Impacts of Gorse

- Invades disturbed and open areas
 - Cleared timber land
 - Overgrazed pastures (and other disturbed areas)
 - Sand dunes
- Grows in thick impenetrable stands
- Intense rapid growth
- Large and long lived seed bank (30-100 years)
- Nitrogen-fixer with extensive litter-fall.
- Volatile Organic Compounds (VOC)

Oregon Coast, picture courtesy of the USDA

Site Selection

Grayland Beach, Westport, Washington, Western Coast of U.S.

Gorse invading sand dunes

Field Research, Questions

 What soil properties are being affected by gorse?

 How much and how fast are the effects of gorse on soil properties?

++	+		_	-	5	-			-	-	-	-	_		_	-	-	_	1	-		-	-	-			-	_
++	+	-	-	- 1	0	P	ha	xia	-	C	-	e	B	D)		-	X	tte	-	n	a		-	\vdash		+	-
++	+											-			-												-	T
													_			_						2						
	1	_	_	1	1	_	_	-	_	_	-		-	_	_		_	_		_	-	-	_	-	-		-	_
11	-	_	_			-	-	-	-	_	-	-		_	-		-	-	-		-	-		-	-		-	-
Ra	in			1	-	9	5	-	-		-											1			-			
1				+																								
186	0	1								_																_	_	
44	2	¥			_			-			-	_		_	_	_				-		-		_			_	_
119	4	-	-	11	-			-	-	-	-		-		-		-	-	-	-	-	-			-	-	-	-
196	2	F	Cr	tt	es.	Q	ь.	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-
145	-	ł		-	-	-				-	-				-		\vdash	-	-	-	-		-	-	-			
ar	1	+				-		-							7	AL.	195	144	145	191	19,	ip		-	-			
12		J			-		-							7	1	63	181	15		87	-	1						-
141	15	>						1						1	182	18)	180	in	178	177	04	3						1
88	11	0	t	to	-								C	14	14	46	in	H)	14	4	43	124						
12		2	~										N/S	164	163	16.2	161	163	69	58	57	cs.	155					1
153	5 '	1					L		_	_	_		4	145	140	147	148	M	60	51	0	53	10	1_				i.
++	-	-	-	_	_	_		_	_	6	1	-		144	0	192	ing i	140	61	198	101		1	_	-	_	-	_
++	+	-	_	_	-	-	-	-	K	iu.	12	100	115	112	NL.	16	114	03	02	61	10	201	tion	-	-	-	-	-
++	+	-		-	-	-	-		14	5	16	P	-	97	A-18	14	102	19	(PH	15	-	147	-	-	-			-
++	+	-		-	-	-	-	H	13	42	21	Po	13	ts	87	84	15	84	8	82	31	1		-	-	-		-
	+	-		-	-			1	u	4	16	4	æ	2	72	73	*	8	76	Ð	8	1/2		1				-
	1						17	65	CA.	63	62	61	63	91	54	57	5.	55	54	9	2/							
							K	31	×	40	41	41	eş.	94	8,	*	43	*	41	50	1	5				1		
						3	p	*	24	36	34	33	31	3	\$2	×	×	37	2	×	124			4	0	2	-	
	_			_		_		_		2	~	6	14	B-	*	-	10	2	22	1		A	DU	Å		0	-	1
+	-	-		_		-	-	_					5	-	<u> </u>	-	-	2			-	Ľ		4	no	-	-	-
++	+	-	-	_	-	-	-	-	-	-	-	-	-		¥	F	7	-	4		-	-	m	1		-		-
	+	-	-	-	-	-	-	-	-		-	-	-	-	-	-	H	-	-	-	-	-	-	-	-	-	-	-
	+	-	-		-	-	-											-	-	-					-	-	-	-
	-		-			-	-	-							1								-					-
	1																											T
1																												
T																							1					

Measurements for Controls

Sampling at each spot was systematic

(due to high homogeneity of control areas)

BD = bulk density

Soil Properties:

- pH
- N, P, K, Ca, Mg, NH₄ & NO₃
- % OM (organic matter)
- CEC and PBS for K, Mg & Ca
- Soluble salts
- B, Mn, Zn, Cu, Fe, Pb, Cd, Ni, Cr & Al
- BD (bulk density)

Time:

Annual rings on stems counted and used to represent time

Results: Comparing gorse and nongorse soil properties

Significant Results ($\alpha = 0.05$):

Statistical test: *Two sided t-test*

 pH, NH₄, NO₃, OM, Soluble Salts, Mn, Pb, Ni & Cr

Statistical test: One sided t-test
Total N (assuming an increase in N)

Boxplots for pH & Nitrate

Results: Soil Properties over Time

Significant Results ($\alpha = 0.05$):

Statistical test: Linear RegressionBD, Total N, pH, OM, CEC & Pb

Trends (what direction):

- Increasing: Total N, OM, CEC & Pb
- Decreasing: BD, pH

Linear Regression for N

Linear Regression for pH

Linear Regression for OM

Discussion: Soil Properties

- Most important changes in the soil:
 - Increase in organic matter
 - Decrease in pH
 - Increase in nitrogen
- Organic matter build up is helping to drive the pH down, and the N up
- All of these are very important to plants, particularly plants using the top 10 cm, such as seedlings

Modeling Impact: Ecology

Parker et al. (1999) suggested:

 $I = R \times A \times E$

I is overall impact on geographic scale R is range area A is average abundance across range E is effect per individual Modeling Impact: Agriculture

Vilá et al. (2004) suggested:

The impact of a weed cannot be considered independently of the crop.

The duration of the weed's presence, and the life history of the crop are also important.

Modeling Impact: My addition

Scott, B. (2005, Masters' thesis) suggest:

Plant invasions cannot be considered independent of the invaded community.

The duration of the invasive plant's presence is also important.

Consider plant characteristics which increase impact for specific systems:

Examples:

- 1. Increase fire risk a problem in dry areas, but not wet areas
- 2. Change in fertility a problem in low fertility systems, but maybe not roadsides

Implications of Soil Property Changes

After a plant invader is successfully removed...

- Increasing N may facilitate other invasive species
- Soil property changes may persist (see Dougherty & Reichard, Plant Protection Quarterly)
- Soil properties can be difficult to correct

Conclusions:

- This research showed that an <u>invasive</u> <u>plant can continue to have effects</u> as it stays resident.
- These <u>effects need to be identified</u>, and possibly corrected for before restoration.
- Need to have clearer understanding of how ecosystems are changed, <u>and at</u> <u>what rate.</u>
- Need to understand <u>what constitutes</u> impact in specific communities

Acknowledgements:

The soil and foliage tests done in this research were paid for by a seed grant from the Center for Invasive Plant Management, Montana State University.

Many thanks to my committee, Kern Ewing, Jennifer Ruesink and Darlene Zabowski.