

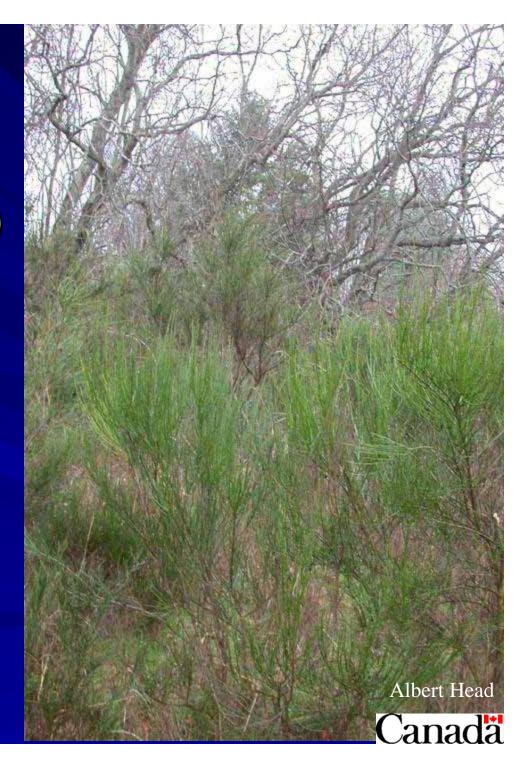
Impacts of Exotic and Indigenous Invasive Plant Species on Forest Ecosystems

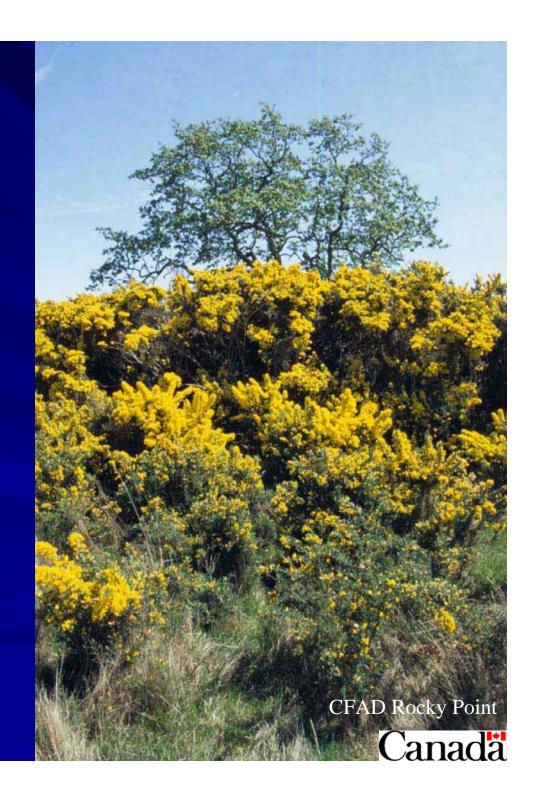
Simon F. Shamoun and Arthur Robinson

Natural Resources Canada, Canadian Forest Service Victoria, BC, Canada

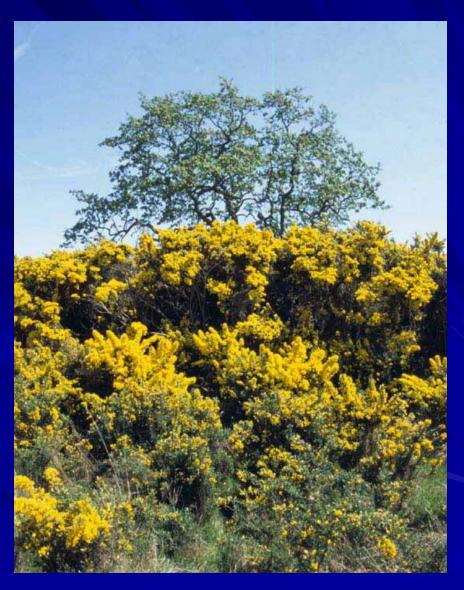
Meeting the Challenge: Invasive Plants in PNW Ecosystems
University of Washington – Seattle, Washington, USA
September 19-20, 2006

Exotic & Invasive Weeds of Forestry in Coastal British Columbia, Canada




Scotch Broom (Cytisus scoparius)

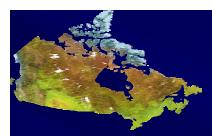
- Exotic, leguminous shrub (pea family *Leguminosae*)
- Native of Europe
- Distributed along Pacific/Atlantic coasts
- Aggressive colonizer of disturbed sites


Gorse (*Ulex europaeus*)

- Exotic, leguminous shrub (pea family *Leguminosae*)
- Conspicuous spines
- Native to central/western
 Europe and North Africa
- Only found in BC
- Classified as noxious weed
- Highly successful in disturbed habitats

Impacts of Broom and Gorse

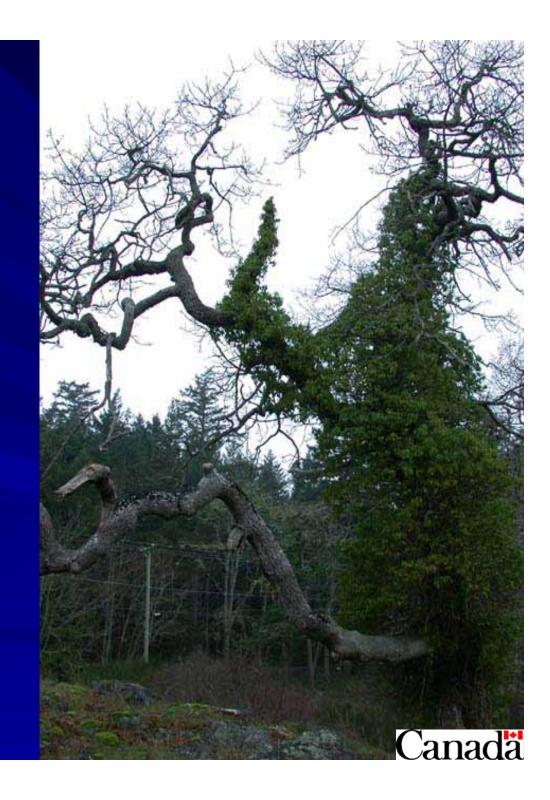

- Detrimental
 - GOME
 - SAR Deltoid Balsamroot,
 White-top Aster, Bear's-foot
 Sanicle, Golden Paintbrush
 - Extremely flammable
- Beneficial
 - Slope stabilization
 - Early pollen source
 - Nitrogen fixation
- Legislation
 - Gorse is listed as a noxious weed throughout the province under the BC Weeds Act
 - Broom is not listed

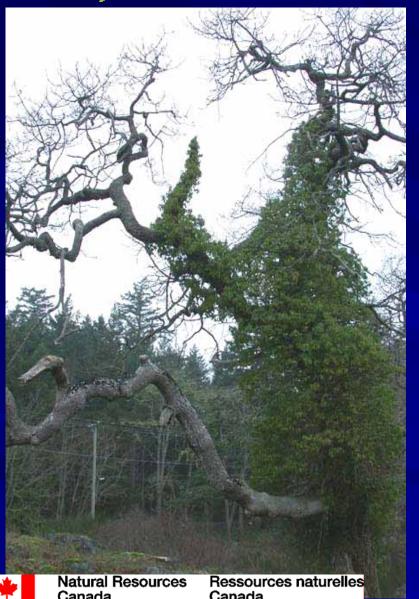


Daphne (Daphne laureola)

- Exotic, evergreen shrub (family *Thymelaeaceae*)
- Native to Europe and North Africa
- Long lived, slow-growing
- Introduced to SouthwestBC and Washington State
- Very common around the Victoria area

Impacts of Daphne


- Detrimental
 - Garry Oak and Arbutus
 - Dense stands shade out forest floor
 - Toxic bark, berries, leaves and sap
- Beneficial
 - Attractive ornamental
 - Berries as a source of food
- Legislation
 - Not classed as noxious in BC


English Ivy (Hedera spp.)

- Evergreen climbing vine (ginseng family Araliaceae)
- Native of Europe
- Introduced to N. America in 18th century
- Widely cultivated as an ornamental
- Often associated with some form of land disturbance

Impacts of English Ivy

Detrimental

- GOME
- SAR especially when in creeping form
- Threat to biodiversity
- Increase storm damage

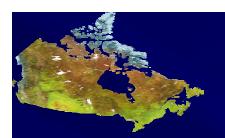
Beneficial

- Late pollen source
- Food source for birds

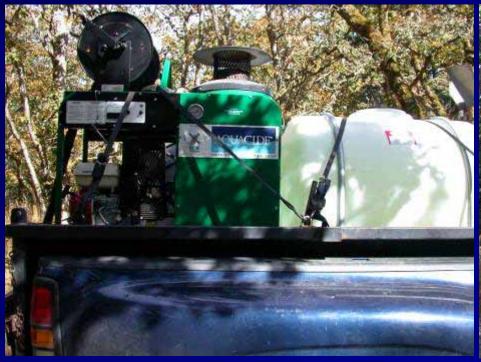
Legislation

 No legislation under the BC Weeds Act

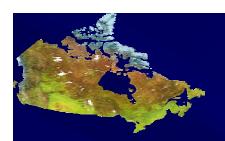
Field Experiments


Table 1: Influence of various treatments on re-sprouting of four exotic weeds in British Columbia after 2 years.

Treatment	Scotch broom	Gorse	Daphne spurge	English ivy
	(% resprouting)			
Cutting alone	80.0	85.0	95.0	98.0
Cutting and herbicide	0.0	0.0	0.0	0.0
Cutting and herbicide-Cp	49.0	51.0	90.0	95.0
Cutting and mulches	0.0	0.0	0.0	0.0


Source: Prasad 2005, Outlook on Pest Management

Aquacide: Super heated water to kill invasive plants


AQUACIDE:

Effect of super heated water on gorse seedlings

Impact of treatment on seed bank and sensitive sites

1 month after treatment

4 months after treatment

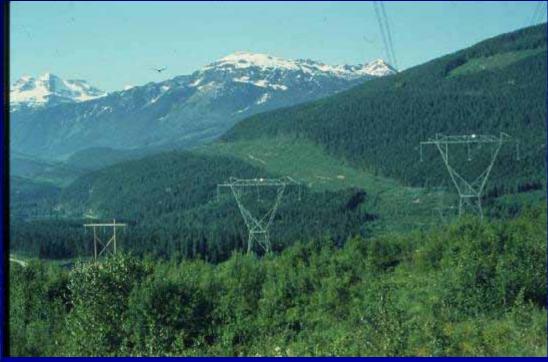
Table 2: Comparison of control options.

Opt	ions	Methods	Comments
1.	Mechanical	Cutting Pulling	Labour intensive Promotes re-sprouting and new emergence of seedlings
2.	Mulching	Black plastic	Labour intensive Not practical on large scale
3.	Chemical herbicides	Triclopyr	Very efficacious, cost- effective Environmental concerns
4.	Biological		
	(a) Bioherbicide-Cp	Native fungal pathogen Treatment of cut stumps	Slow to act Variable results
	(b) Bioherbicide- <i>Phomopsis</i>	Patch treatment on Daphne stems	Very efficacious but needs further testing

Source: Prasad 2005, Outlook on Pest Management

Summary

- Herbicide (Release® or Garlon®) is most effective
- Mulching is effective although not always practical
- Further research is necessary to:
 - Develop effective bioherbicides
 - Determine the impact of Aquacide on sensitive ecosystems
- Integrated approach provides best sustainable results



Indigenous Forest Vegetation Management

Conifer Plantations



Utility Rights-of-way

Tools for Management of Indigenous Forest Weeds

Mechanical removal

Manual cutting

Prescribed burning

Chemical herbicides

Biological control (e.g. C. purpureum)

Indigenous Target Weeds

Weedy Hardwood Species

- Acer macrophyllum (big leaf maple)
- Alnus rubra (red alder)
- Populus tremuloides (trembling aspen)

Weedy Shrub species

- Rubus spp.
- Gaultheria shallon (salal)

Comparative efficacy of C. purpureum on Forest Weeds

Fruiting bodies

Application on red alder

Formulated product

Application on bigleaf maple

Red Alder Site – Duncan, Vancouver Island, BC

- Randomized Complete Block Design
- 5 Blocks x 6 Treatments = 30 plots
- Treatments (20 alder trees/treatment)

Treatment #	Treatment Description
1	Manual cut control
2	Formulation control
3	Cp PFC 2140
4	Cp PFC 2139
5	Vision® (Carbopaste®)
6	Vision® (spray)

Percent stump mortality of red alder, after treatment with C. purpureum and herbicides

Treatment	Stump mortality (%)
Manual-cut control	65.0 b
Formulation control	70.0 b
Cp PFC 2140	96.0 a
Cp PFC 2139	100.0 a
Vision® (Carbopaste®)	99.0 a
Vision® (spray)	100.0 a

Treatments with the same letter are not significantly different by Duncan's multiple range test ($p \le 0.05$)

Number of alder sprouts/stump treated with *C. purpureum* and herbicides

Treatment	Mean #living sprouts/stump
Manual-cut control	1.18 a
Formulation control	1.37 a
Cp PFC 2140	0.02 b
Cp PFC 2139	0.00 b
Vision® (Carbopaste®)	0.01 b
Vision® (spray)	0.00 b

Treatments with the same letter are not significantly different by Duncan's multiple range test $(p \le 0.05)$

Myco-Tech™ Paste

A Vegetation Management Product

FOR SALE / FOR USE IN BOREAL AND MIXED FOREST REGIONS, EAST OF THE ROCKY MOUNTAINS ONLY

For inhibition of regrowth on cut stumps of deciduous tree species, in right's-of-way and conifer release management situations

COMMERCIAL

GUARANTEE: Chondrostereum purpureum (strain HQ1)...min. of 10° cfu/mL

> READ THE LABEL BEFORE USING KEEP OUT OF REACH OF CHILDREN POTENTIAL SENSITIZER CAUTION EYE IRRITANT

REGISTRATION NO. 27020
PEST CONTROL PRODUCTS ACT

Net contents: 3 L

Use within 3 months of manufacture

801, Road 344 - P.0, 3158 • L'Assamption • Quebec • Canada 35W 4W9 Telephone: (450) 589-1824 / Fax: (450) 589-4298

Pâte Myco-Tech™

Produit de Contrôle de la Végétation

À VENDRE / À UTILISER DANS LES RÉGIONS DE FORÊTS BORÉALE ET MIXTE, SEULEMENT À L'EST DES ROCHEUSES

Inhibe la formation de rejets de souches de certains feuillus dans les emprises et les opérations de dégagement des coniferes

COMMERCIAL

GARANTIE: Chandrostereum purpureum (isolat HQ1)...min. of 10⁵ cfu/ml.

LIRE L'ÉTIQUETTE AVANT L'EMPLOI GARDER HORS DE LA PORTÉE DES ENFANTS AGENT DE SENSIBILISATION POTENTIEL IRRITANT POUR LES YEUX

NUMERO D'HOMOLOGATION 27020 LOI SUR LES PRODUITS ANTIPARASITAIRES

Contenu net: 3 L

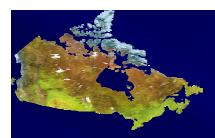
Utiliser dans les 3 mois de la fabrication

801. Route 344 - C.P. 3158 • L'Assamption • Guébec • Canada 35W 4M9 Féléphone: (450) 589-1824 / Télécopleur : (450) 589-4298

Product Development

CHONTROLTM

MYCOLOGIC



Biological Control of Weedy Shrub Species

Biocontrol of Rubus spp.

Biocontrol of salmonberry with Phoma argillacea

- > 70% leaf necroses after 7 days
- Leaves dry, curled, brown, defoliates
- Damage extend to branches and stems
- Mycelia more infective than spores (100% vs 76%)

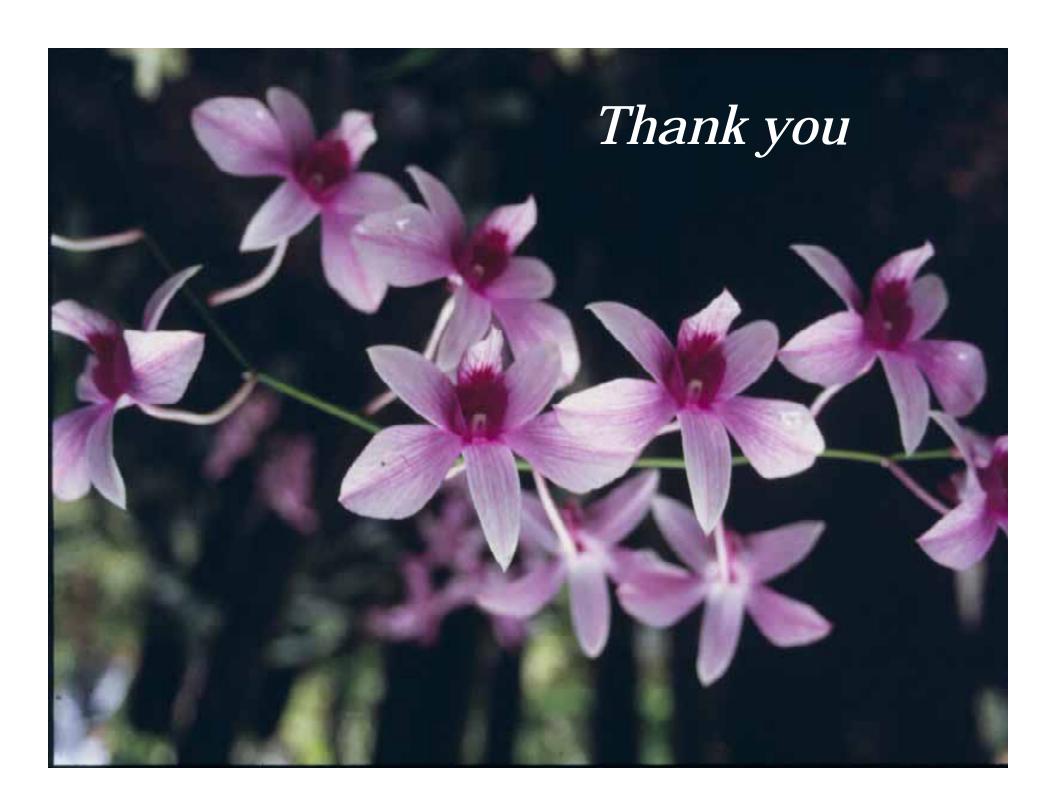
Biocontrol of salal (Gaultheria shallon)

Biocontrol of salal (Gaultheria shallon) with Phoma exigua

8 weeks after inoculation, newly growing shoots can be completely controlled

Biocontrol of salal (Gaultheria shallon) with Valdensinia heterodoxa

Shamoun and Vogelgsang, 2005. U.S. Patent 6,913,920 B2



- Chondrostereum purpureum treatment on red alder is as effective as chemical herbicides
- C. purpureum can be integrated with manual cutting operations and reduce reliance on chemical herbicides
- Commercialization of the first forest vegetation management product based on biocontrol agent *C.* purpureum as (Chontrol TM & Myco-Paste TM) for use in North America
- Phoma argillacea is a potential biocontrol agent for Rubus spectabilis
- Phoma exigua and Valdensinia heterodoxa are promising biocontrol agents for management of Gaultheria shallon

