

Persistence of Japanese Knotweed

Jason Dumont

Portland Area Preserves Steward

The Nature Conservancy

Persistence of Knotweed

Project Overview

Knotweed Control ExperimentsLandscape Level Control

Control Difficulties

Epinastic GrowthRegeneration of Knotweed

New Treatment Protocol

Sandy River Riparian Habitat Projection Project

Early Control Methods (2001-2003)

Controlled experiment:

- 2 herbicides

 -glyphosate
 triclopyr

 3 control techniques
 - -foliar
 - -stem-wick
 - -manual-cut
- varied # & timing of applications

Early Experiment: Summarized Control Results

Knotweed response to 17 Treatments: May 2000 - June 2002

Stem injection experiments (2003-2005)

Controlled experiment:

- tested 1.5ml, 3ml, 5ml, 5ml + spray and control
- 6 patches per treatment
- tested July & Sept. application dates

Research questions

- How effective is the injection treatment at reducing stem number?
- How much glyphosate per stem is needed for maximum control?
- Is supplemental spray required to treat stems too small to inject?
- Do late-summer treatments work as well as mid-summer treatments?
- Is it necessary to inject every stem?

Stem reduction after 1 & 2 years

Uncontrolled landscape stem injection results

2003 data set:

Compared 3ml+spray vs. 5ml+spray
46 sites treated in 2003

2004 data set:

- 5ml+spray
- 117 sites treated in 2004

1 to many patches per site

before treatment

1 yr after 5ml +spray treatment

Stem reduction after 1 field season, comparison of landscape treatments

Landscape level progress (2001 – 2005)

Total stem count for 233 Sandy River sites

Epinastic Growth

History of Site 18-27

Epinastic Growth on an Old Knotweed Crown

Excavation of Knotweed Rhizome at Site 18-27

Healthy Roots, Very Few Shoots

Summary Stem Count For Controlled Injection Experiment Phase 3, Patch 30

Phase 3, Patch 30 Pretreatment

Phase 3, Patch 30 1 year post-treatment

Phase 3, Patch 30 2 years post-treatment

Phase 3, Patch 30 3 years after treatment

• 0 new stems

Bulky upper root crown tissue appears dead

Unfortunately...

• Lower crown and rhizomes have ample living tissue

Knotweed Before Treatment

Knotweed After Treatment

Note large root area and small shoot surface!

Evidence of Knotweed Regeneration

71% of "No New Stems" sites never regrow

Treatment Recommendations

New Sites:

- Inject all large stems with 3 or 5 ml of glyphosate
- Spray smaller stems with a mixture of 1% imazypyr and 4% glyphosate
- If time allows, return in late summer for retreatment
- Monitor for 3 years

Sites Already Being Treated:

- Treat as a new site when possible
- When significant epinastic growth is present, consider NOT treating for 1 or more years or...
- Dig out root crown and all rhizomes possible in Spring
- Return for late season spray
- Monitor for 3 years

Questions?

Jason Dumont Jdumont@tnc.org

tncweeds.ucdavis.edu: includes best management practices document