Challenges in Predicting the Distributions of Exotics using Habitat Distribution Models

> Chad C. Jones Steven A. Acker Charles B. Halpern

Potential of Models

- Monitoring for invasive species is costly
- If we can predict where exotics have the potential to invade, we can target monitoring efforts in this area
- Habitat distribution models have been used to predict distributions of rare species and are starting to be applied to invasive species

Habitat Distribution Models

Modeling Techniques

- Logistic Regression (LR)
 - Most commonly used technique
 - Requires presence and absence data
 - Requires many assumptions
- Ecological Niche Factor Analysis (ENFA)
- Genetic Algorithm for Rule-set Prediction (GARP)

Model Assumptions

HOWEVER

These models assume that the species are in equilibrium with the environment AND

Presence-Absence models assume that the sampled frequency reflects the actual frequency

Data Challenges

- Invasive species data are often not systematically or randomly sampled
- Datasets are often clumped along roads and in areas currently invaded
- Absence data is often uncertain

Modeling Challenges

- 1) Clumped data points can have a strong effect on model results
- 2) Spreading species can lead to biased results
- 3) Species frequency is often unknown and may affect model results
- 4) We cannot test how well models predict future distributions

Project Goals

- Develop habitat distribution models for three invasive species on the Olympic Peninsula to inform development of monitoring
- Compare the results and sensitivities of three modeling techniques

Olympic Peninsula, WA

~12,500 km²

13 datasetscombined to provide4142 +/- data points

Study Species

Geranium robertianum

Cirsium arvense

Photo: Roger del Moral

Rubus Iaciniatus

Modeling Methods

- For each species and model technique:
 - Data divided into 5 equal subsets
 - Developed the model with 4/5 of the data
 - Used the remaining 1/5 to assess accuracy
 - Repeated this for all 5 possible subsets*
- Used an equal number of absences as presences for each model run

*At present only one subset has been used for GARP

Habitat Variables

- Climate
 - # of frost days
 - Annual precipitation
 - Precipitation frequency
 - Water vapor
 - Radiation
 - Distance to nearest water

- Topography
 - Slope
 - Potential radiation
 - Heat load
 - Topographic Moisture Index
- Vegetation
 - Conifer cover
 - Vegetation cover

Questions

- How does a clumped sample affect model results?
- How are model results affected by the fact that species are still spreading?
- How does frequency affect logistic regression results?
- How do results from different models compare?

Effects of Clumping

 Set minimum distances between plots and randomly removed plots closer than this minimum distance

Min Distance	Geranium	Rubus	Cirsium
100 m	219	559	549
500 m	80	245	271
5000 m	35	38	67

Rubus laciniatus

Rubus laciniatus ENFA models

Effects of Spreading Species

Frequency of Precipitation

Geranium robertianum model results

Effects of Frequency

- Sampled frequency ranged from 10-20%
- However, this was highly dependent on where the plots were located, actual frequency is unknown and likely increasing
- Ran Logistic regression models at different frequencies (50%, 33%, and 20%).

Rubus laciniatus - 500 m **50%** 20% 33%

Comparison of Models

Conclusions

- Spurious correlations and clumping in the datasets potentially pose serious problems
- Logistic regression tends to perform better than ENFA or GARP, but is sensitive to frequency
- Measures of accuracy based on the current distribution (e.g. Kappa and AUC) may not accurately assess how well the models predict future distributions

Recommendations

- For Logistic Regression use a high frequency
- Sample design should try to capture the invasive across its entire distribution rather than focusing on the areas with greatest invasion
- Accuracy measures should be treated with care – look at the distribution maps and consider information about the biology of the species

Future Directions

- Finish modeling for two additional species
- Combine models to create a priority map for monitoring
- Add dispersal into the models
- Compare with models based on information from the native range

Acknowledgements

- Data Sources
 - Olympic National Park
 - ONP Exotic Plant
 Management Team
 - Olympic National Forest
 - Ann Lezberg
 - Robin Lesher, USDA
 Forest Service

- Collette DeFerrari
- Olympic Habitat
 Development Study
- Ed Schreiner, USGS
- Andrea Woodward, USGS
- Funding
 - National Park Service