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1. Introduction 
 
Forestry has been undergoing a shift from traditional forest measurement techniques, and 

field work to the use of remotely sensed data beyond aerial photography and analysis in 

Geographic Information Systems (GIS) for the last several decades. New applications of 

technologies such as Light Detection and Ranging (LIDAR) have begun to change the 

direction of how companies, agencies and consulting firms approach forest management 

questions. LIDAR has provided information about terrain and earth surfaces for many 

years, but the use of this three dimensional data for forest management and inventory 

applications is still developing. However, “increasing costs of field surveys, coupled with 

ever-increasing demands for collection of both timely and more detailed information, are 

directing resource professionals to consider significant changes in their approaches to 

forest assessments”(Evans et al. 2004) which has put LIDAR at the leading edge of this 

change. 

 

A push toward deriving forest inventory and delineation of stands from remotely-sensed 

data has been investigated for many years. A great body of research is available 

investigating the use of various types of imagery to derive forest characteristics. Much of 

this research focuses on the use of high-resolution imagery to identify individual tree 

crowns and derive forest inventory information (Leckie et al. 2003, Gougeon, 1995, 

Brandtberg & Walter 1998). The delineation of stands as a secondary step after crown 

delineation has also been explored with high-resolution imagery (Gougeon 1997, 

Gougeon & Leckie  2003). Other research has directly addressed the goal of stand 

delineation with high resolution imagery (Warnick et al. 2006, Van Coillie 2006). The 

use of satellite imagery such as Ikonos-2 and Landsat- TM for stand characterization has 

also been explored (Bergen et al 2000, Green 2000, Waring & Running 1999).  However, 

this research has limited applicability to operational-level processes and methods due to 

the complexity and costs associated with acquisition and processing of imagery.  
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In recent years, LIDAR has been a focus of research for forestry and land 

management applications. While this type of sensor has been used for terrain mapping 

applications for 10-15 years (Reutebuch et al. 2003), it is still a relatively new technology 

in forestry. The majority of research has been focused on measuring individual tree 

parameters and producing stand summaries (Andersen 2003, Holmgren & Persson 2004, 

Naesset & Okland 2002). Less attention has been given to practical, operational-level 

uses of LIDAR data.  

 

The next step in this process is to investigate the use of LIDAR at the operational level to 

replace traditional field and aerial photography based inventories. This research looks at 

the first step in a process leading to LIDAR based forest inventory. The central focus of 

this project was to develop a procedure to delineate forest stands with LIDAR and was 

funded by the Oregon Bureau of Land Management. 

 

The Bureau of Land Management (BLM) is interested in the use of LIDAR to achieve 

their mandate of “sustaining the health, diversity, and productivity of the public lands for 

the use and enjoyment of present and future generations” (BLM website, 2008, About the 

BLM). Part of this mandate is to continue to develop more effective land management 

practices and improve efficiency as well (BLM website, 2008, About the BLM). The 

BLM is facing the task of managing large areas of forest land in conjunction with aging 

inventory data, and reduced staffing levels due to retirement. To meet the requirements of 

their operational mandate, the BLM would like to develop a method that will allow them 

to respond to this challenge in a timely and effective way. The final objective for the 

BLM will be to derive forest inventory metrics necessary for forest management from 

LIDAR data. 

 

The method developed for this research is the first step towards an LIDAR-based 

inventory system and will allow for a timelier and dynamic generation of forest stand 

information. Forest stands are the base unit of inventory and management practices, and 
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provide essential information for planning. Therefore, delineation of forest stands 

prior to developing a procedure for forest inventory is an important first step.  

 

This method will not only be of use to the BLM, but any agency, company or consultant 

looking to develop a more efficient way to delineate and analyze forest stands. An 

important advantage to this method is that it can be employed every time a LIDAR 

mission is flown and will provide a more effective means to track landscape level 

changes over time. This method is also flexible and additional information layers can be 

added as LIDAR research progresses.  
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2. Background 

 

2.1 Importance of stand delineation 

Forest stand delineation is an integral process in forest inventory and forest management. 

The idea of what constitutes a “forest stand” is dependent on the landowner and their 

particular operational goals. In general, stands can be defined as a “contiguous group of 

trees sufficiently uniform in species composition, arrangement of age classes, site quality 

and condition to be a distinguishable unit” (Smith et al.1997). Stands are the operational 

unit at which forest managers make silvicultural decisions, and perform financial 

analysis. Forest stands are the base unit of inventory and management practices, and 

provide essential information for planning. Inventories rely on the stand unit to record 

and store forest conditions, track treatments and project future growth and structural 

changes. Stands also provide the basic unit of analysis when examining landscape level 

conditions for ecological and habitat considerations.  

 

Stand delineation has always been a subjective process dictated by the needs of the 

company, agency or organization that is managing the land (Paine 1981). Franklin 

(2001), describes current methods of stand mapping as follows “it seems increasingly 

obvious that the rules of forest mapping as practiced over the past few decades are not 

particularly logical at all, but are strongly dependant on the skill of the analyst, the local 

nature of the forest condition, and cultural tradition in the particular jurisdiction 

responsible for fulfilling demands for forest information.” Parameters that are considered 

in defining stands vary based on this principle as well. Depending on the management 

goals of the agency, company or organization the definition of what is a stand can vary 

greatly (Smith et al. 1997). Common parameters considered in stand delineation include 

trees per acre (tpa), basal area (BA), percent cover, stand volume, average height, age and 

species composition (Smith & Anson 1968, Smelser & Patterson 1975, Avery 1978). 
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2.2 Existing methods for stand delineation 

Methods for delineating forest stands are based off of photogrammetric techniques 

utilizing aerial photography of the land ownership. Many of these techniques date back to 

post World War II and are continued to be used (Sisam1947, Spurr 1948). Stand 

delineation with aerial photographs requires an analyst with formal training in 

photogrammetry and extensive coverage of ownership with aerial photographs. The 

specific techniques for stand delineation change depending on the parameters the 

landowner wishes to use for the delineation. Techniques for determining these parameters 

are well documented in several manuals that have been published by the USDA Forest 

Service and other agencies (Smelser & Patteson 1975). While many companies and 

agencies have access to image processing software, the accuracy of current methods are 

still expected to be about  80% to 90% and these accuracies depend greatly on the skill of 

the analyst, quality of data and tools used in the process (Terry Curtis, pers. comm., WA 

State Dept. of Natural Resources, July, 1, 2008). 

 

While stand delineation from aerial photographs is the accepted practice in the forest 

industry, it is widely recognized that there are significant limitations to this approach. 

Accuracy of the stand delineation is a primary concern of this process and can lead to 

severe economic impacts for the landowner (Naesset 1999). In addition to concerns about 

accuracy, this process can be costly in time and resources, can deliver inconsistent 

results, may not be reproducible and often does not deliver the detail or accuracy of 

results needed for management (Chubey et al. 2006). Franklin (2001) also mentions that 

“classification and mapping are always done for some purpose; it is that purpose, and the 

skill of the analyst, which exert perhaps the strongest influence on the accuracy and 

utility of the final products.” Even with such criticism, a more reliable method that covers 

large scale areas has not been adopted by the forest industry in general.  
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2.3 Overview of airborne laser scanners (LIDAR) 

Airborne laser scanning systems also known as Light Detection and Ranging (LIDAR) 

sensors are used in this research. These systems are active sensors that emit a laser pulse 

and record the information about the pulse as it returns to the sensor (Wehr & Lohr 1999) 

The aircraft carrying the sensor is equipped with a highly accurate “position and 

orientation system (POS), realized by an integrated differential GPS (DGPS) and an 

inertial measurement unit (IMU)” (Wehr & Lohr 1999). This allows for accurate spatial 

reference of the collected returns. Currently, LIDAR sensor manufacturers report errors 

for height measurement of approximately .15m to .20 m and range errors of .05 m to .15 

m (Baltsavias 1999b). The returns from the laser pulse come back to the sensor and 

provide measurements in the form of three dimensional point data, with highly accurate 

positional coordinates. These data points collectively are referred to as “point clouds” and 

it is these point clouds that are used in analysis. 
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2.4 LIDAR in forest management applications 

The primary use of LIDAR has been for the mapping of terrain in both forested and non-

forested areas (Reutebuch et al., 2003). The use of LIDAR-derived Digital Elevation 

Models (DEM) has been demonstrated in a number of cases and has been applied to 

operational and harvest plans (Schiess & Krogstad 2003, Schiess 2005). In these cases, 

LIDAR derived products have been applied to harvest and road design for improved 

efficiency in operational planning. Other uses for LIDAR at the operational level are 

starting to emerge in the realm of forest inventory and landscape analysis. The use of 

LIDAR in applications other than terrain modeling in forest management is still in the 

developmental stages and remains in an active research area.  

 

In recent years, the idea of using LIDAR for forest inventory and structure measurement 

has been under investigation. Techniques for measuring both individual tree attributes 

and plot level forest structure measurement have been investigated and are continuing to 

be developed (Reutebuch et al. 2005). Efforts in LIDAR research are now focusing on 

assessing stand data and individual tree parameters. Recent work shows the use of 

LIDAR to define canopy structure through a computer graphic approach (Kato et al. 

2006, Kato et al. 2007) which is an important factor in operational activities, fire 

modeling and habitat assessment. Other research has examinedLIDAR derived tree 

parameters in relation to cable logging systems (Kato & Schiess 2006) and critical forest 

parameters for fire behavior modeling (Riaño et al. 2003). 

 

A focus in current research is investigating the use of LIDAR for plot level measurements 

of forests. The work relating to this topic has demonstrated that LIDAR has a comparable 

or better accuracy for certain measurements than field or photo interpretation techniques. 

Individual tree height has been the most common metric to be derived from LIDAR data 

and the accuracy has been well documented in the literature (Holmgren 2004, Naesset 

2004, Andersen et al. 2006, Maltamo et al. 2006). Other individual tree measurements 

include canopy height and bulk for fire modeling (Andersen et al. 2005) and stem 
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volumes (Holmgren et al. 2003). Research into individual tree species has also been 

investigated and produced results of varying success (Brandtberg 2007).  

 

Stand level measurements from LIDAR data have been extensively studied in the past 

decade. Naesset (1997) states that “the current study has shown that laser scanner data 

may be used to obtain estimates of forest stand heights with an accuracy equal to, or even 

higher than, those provided by present inventory methods based on aerial photo 

interpretation.” Measures of vegetation height, cover and canopy structure have also been 

shown to be accurately derived from LIDAR data (Lefsky et al. 2002). Stand level 

measurements of height, canopy closure, basal area and volume were investigated by 

Means et al. (2000) and concluded that  “empirical relationships can be developed that 

have significant potential for predicting important stand characteristics.” Other work also 

explores the use of LIDAR to predict stand level estimates of timber volume and basal 

area (Magnusson 2006). 

 

Other research has looked at LIDAR in conjunction or compared with aerial photographs. 

One study investigates the use of LIDAR and aerial photographs together to produce 

estimates for timber volume, bare earth models and canopy modeling (Suarez et al. 

2005). This study demonstrated how coupling of the two technologies could produce 

more accurate results for estimated parameters. In a study conducted in 1999 by 

Baltsavias, aerial photographs and LIDAR were compared for use in forest mapping and 

terrain modeling. The results of the study showed that LIDAR had a clear advantage over 

aerial photography in mapping applications but had a disadvantage in cost per acre flown 

(Baltsavias 1999a). A cost-plus-loss analysis of photo inventories and LIDAR inventories 

was performed by Eid et al. (2004) and examined basal area, dominant height and trees 

per hectare. The cost-plus-loss analysis method also took into account the cost associated 

with the errors of miscalculation of future harvests based on errors in the inventory. The 

results show that LIDAR generally produces a more accurate estimate of these factors at 

a lower cost (Eid et al. 2004). 
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This body of previous research has begun the process of moving toward a 

functional, operational level forest inventory procedure using LIDAR data. However, 

these prior investigations do not address the specific objectives of this project and 

therefore there is still a demonstrated need for research into the use of LIDAR as an 

operational tool in forest inventory. In two studies examining the use of LIDAR for forest 

inventory, stand delineation was performed using aerial photography techniques to 

determine the various stand classes and design a sampling procedure (Naesset 2004b, Eid 

et al. 2004) These papers also demonstrate the cost lost to inefficiencies in inventories 

done with photo interpretation techniques: 

“The costs applied in the present study reflect fairly well the cost structure in the 

Nordic market around the year 2000. In photo-interpretation, approximately 60% 

of the costs are related to labor-intensive operations, such as stereoscopic 

measurement and image interpretation. This is the core of forest inventory using 

aerial photography, and with a tendency towards increased costs for manual labor 

seen in general, it is reasonable to expect a gradual increase in costs for photo-

interpretation over time. In the method based on laser scanning, approximately 

50% of the total costs are related to laser scanning and laser data processing. 

These costs are expected to decrease as the capacity of laser scanning systems 

increases. With increased capacity, the required flying time to cover a given area 

with laser data of a certain sampling density decreases” (Eid et al. 2004). 
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2.5 Object orientated image classification for land cover classification  

The classification method used in this research is called object-oriented image 

classification. Object-oriented image classification is a technique that was developed for 

classifying images into user-defined classes (Blaschke et al. 2000). This classification 

method works with image objects (aggregates of pixels), rather than on a pixel-by-pixel 

basis used in traditional image classification techniques (Chubey et al. 2006). This 

classification technique was chosen over pixel-by-pixel classification because it 

incorporates the spatial relation among pixels and their neighbors to segment the image 

(Camara 1996). 

  

A software package is used to segment and classify images. Segmentation of objects is 

based on user defined parameters. Classification is then accomplished by training the 

software program with a sample of objects that meet the specifications of the user defined 

classes. This training procedure usually utilizes “training sites” that often consist of field 

verified examples of the classes. Once the training is complete, the software package then 

classifies the image based on the training objects. These classifications can be adjusted 

through refinements in training procedures and hierarchal classifications that consider 

classes incrementally. The final result is a map of the various classes that can be used for 

a variety of purposes. One of the most common uses for this technique is to classify land 

cover types for mapping, change detection or monitoring programs. 

 

In the case of this project, this classification technique is used in a slightly different way. 

The images that are segmented for this research are generated from LIDAR point clouds 

and then converted to raster images to be used in the classification software package. 

Generally, images used in this type of classification are collected from passive optical or 

hyperspectral instruments and do not require information to be extracted before they are 

used in the software package. A recent study by Antonarakis et al. (2008) explored a 

similar technique of deriving information from LIDAR data and rasterizing the 

information for image classification of land cover types around river meanders in France. 

This paper reported overall classification accuracies of 94% and 95%, their method 
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utilized low density LIDAR data (~1.9 returns per square meter) and hierarchical 

classification techniques. While this study has similarities to the research presented in 

this project, there are important differences between the end goals of the studies and the 

classification techniques used. This project utilizes a higher density LIDAR data set (~ 4 

returns per square meter) and does not use a hierarchal classification method. Also, the 

end goal is to classify forest stands, rather than land cover types. 
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3. Objectives 

The primary goal of this project is to develop a process that will generate data to improve 

the BLM’s current forest management practices. To meet the requirements of their 

operational mandate, the BLM would like to develop methods and practices that will 

allow them to respond to this challenge in a timely and effective way. Recent research 

suggests that the tools to meet this mandate are available, but have yet to be applied to 

practical methods for operations in large scale, North American forest ownerships. This 

project begins the development process for these methods.  

 

The specific objective of this project will be to develop a method to delineate forest 

stands using LIDAR data and evaluate the accuracy of the results. An important 

component of this project is to develop a method that will be repeatable with a variety of 

forest types and datasets. This will serve as the basis for future work by the BLM to 

extract inventory parameters from LIDAR data. 
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4. Methods 

 

4.1 Blue Ridge study site 

The field site chosen for this project was the Blue Ridge site in Capitol Forest west of 

Olympia, Washington. The Blue Ridge site was chosen based on location, forest type and 

availability of LIDAR data, plot measurements and aerial photographs. Figure 1 is an 

aerial photograph of the study site taken in 1999. This site is represenative of the forest 

type managed by the BLM in Oregon and provided a variety of stand conditons. The site 

has been covered with two high density LIDAR flights allowing for grid cell derivations 

as detailed as 2 feet, as well as established survey control points and plot locations.  

 
Figure 1 – Study Site.  
Blue Ridge Study site located in the Capitol State Forest west of Olympia, WA. This photograph was taken 
in 1999 and orthorectified. The study area has a variety of silvicultural treatments including clearcuts, 
patchcuts, group selection and thinning. This study site also has several of stand conditions representative 
of forests in Western Oregon and Washington. Map units are in meters. 
 
4.2 LIDAR Data 

LIDAR data for the study area was acquired in 1999 and 2003 with a high density 

airborne sensor. Two datasets allowed for comparison of consistency  of the method. The 
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two LIDAR datasets are similar in the point densities per square meter and in leaf-

off conditions. The table 1 outlines the specifications for the datasets.  
Table 1- Specifications for LIDAR acquisitions of the Blue Ridge study site.  
From (Andersen et al. 2005).  
 
Acquisition Parameters 1999 2003 
Acquisition Date  March August 

Laser Scanner  Saab Topeye Terrapoint ALTMS 

Flying Height  200 m 900 m 

Laser Pulse density 3.1pulses/m2 4.9 pulses/m2 

Max. returns per pulse 4 4 

Platform Helicopter Fixed-wing aircraft 
 
 
4.3 Plot information 

As part of another study conducted by the Pacific Northwest Research Station of the 

USDA Forest Service, plot locations were established in the study site. The 

measurements on the plots are described in detail in “Silvicultural Options for Young-

Growth Douglas-Fir Forests: The Capitol Forest Study - Establishment and First Results” 

(Curtis et al. 2004).The plots were measured in both 1999 and 2003 to correspond to the 

LIDAR flights. The classes for this project were determined by the available plot data for 

the site. To define the individual classes, information about trees per acre (tpa), average 

diameter of the 40-largest (by dbh) per acre (D40), average height of the 40-largest (by 

dbh) per acre (H40) were used. Species information not included as it is not available 

from LIDAR data at this time. The classes were broad classifications of forest stand 

types. It is expected that the classes will change based on the management practices of 

the landowner and forest types present. Table 2 below, describes these classifications. 

Each of the plots has a surveyed, spatially-accurate location. Therefore, plots that met 

class descriptions could be used as guides for training after the image was segmented.  
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Table 2- Description of stand classes. 
This table shows criteria used to create the stand classes. The plot information contains a minimum trees 
per acre (TPA min) and a maximum trees per acre (TPA Max) for each class. Information measured in 
inches about the minimum diameter at breast height of the forty largest trees (D40 Min) and maximum 
value for the diameter at breast height of the forty largest trees (D40 Max). The final criteria was the 
minimum and maximum values for the heights of the forty largest trees by diameter (H40 min and H40 
Max) for each class measured in feet.  
 
  Plot Values   

Stand Type/Class TPA Min TPA Max  D40 Min 
(in)  

 D40 Max 
(in) 

 H40 Min 
(ft)  

  
H40 Max 
(ft) 

Mature 50 210 26.7 31.2 141.2 152 
Thinned 15 20 21.9 24.1 134 150.3 
Intermediate 355 755 4.6 7.1 45.6 49.2 
Young 1 no data no data no data no data no data no data 
Young 2 222 533 4.7 4.7 26.75 29.9 
Clearcut/ Road 0 0 0 0 0 0 

 
4.4 Software 

This study utilizes three software packages to perform the analysis. These programs were 

chosen based on accessibility and cost of the software packages. A brief description of 

each program is included in this section, a more detailed description of the programs are 

contained in Appendix 1.  

 

FUSION - Is a free software developed by the USDA Forest Service Pacific Northwest 

Research Station and distributed by the USDA Forest Service Remote Sensing 

Applications Center (McGaughey, R. J. 2007). This software package was chosen as the 

data preparation tool due to its public availability and access. It is also based on non 

proprietary algorithms and methods that allow for user adjustment and the processes that 

are used are documented in publicly available literature. FUSION uses the bare earth 

model and raw LIDAR points to generate the final stem density, percent cover and 

average height raster files.  

 
ESRI ArcMap- This Geographical Information System (GIS) is the most commonly 

used GIS package and is the GIS package used by the Oregon BLM. A recent study of 

GIS users from GISjobs.com reported that 78% of the respondents used ESRI products in 

their work (User survey, 2008). This demonstrates the popularity and availability of the 
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ESRI products and why this software was chosen for this research. ArcMap is used 

primarily as a viewing tool for data after it has been created. 

 

SPRING- This program was developed by Brazil's National Institute for Space Research 

and is available as a free download (Camara et al. 1996). This software provides a tool to 

perform object oriented image segmentation, training of the segmentation and final 

classification. The output from this program is a shapefile that can be viewed in ESRI 

ArcMap or other GIS programs.  

 

4.5 Data Preparation  

The choice of the metrics used in this analysis was based on a literature review of forest 

inventory and photointerpretation manuals. Percent cover, stem density and average 

height are common forest stand metrics used to delineate stands (Franklin 2001, Spurr 

1948, Smelser & Patterson 1975). In addition to their use in traditional forest mapping 

procedures, these parameters were chosen because they can be derived reliably from 

LIDAR data using FUSION. Although previous studies have shown the potential for 

using LIDAR intensity and structural information to classify species types (Holmgren & 

Persson 2004), individual tree species cannot be reliably and consistently derived from 

LIDAR datasets, and therefore was not included in this study. In the future, the addition 

of species or intensity information could be added as additional data layers. 

 

The data preparation for our method is described in the flow chart in figure 2. The flow 

chart describes the steps and processes used to create raster layers for input into SPRING.  

Appendix 1 provides a detailed, step-by-step description of the tools used to produce 

these layers in FUSION. The purpose of this section is to briefly outline the technical 

details and reasoning behind the steps used in data preparation. 
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Figure 2- Flowchart of data preparation and analysis.  
The data preparation and analysis is divided into two main steps. The bulk of the analysis is done within the 
FUSION software package and the resulting raster datasets (percent cover, stem density, average tree 
height) are then used in the SPRING software package to perform the image segmentation and 
classification. The raster datasets and output from the SPRING classification are viewed using ESRI 
ArcMap. The raw LIDAR point cloud is used in the first two steps of the data processing. To create the 
percent cover raster dataset, the cover tool in FUSION is used that calculates the number of points above a 
height specification divided by the total number of points in the cell (McGaughey, R.J., 2007). The raw 
LIDAR points along with the bare earth model are used to create the canopy height model which is the 
intermediate layer required for the canopy maxima tool. The canopy maxima tool creates a list of canopy 
maxima points which is the dataset used to derive the remaining raster datasets, stem density and average 
height. A detailed description of the data preparation process is described in Appendix 1. 
 

Percent Cover – This raster dataset is created with the cover tool in FUSION. This tool 

utilizes the raw LIDAR point cloud and the ground surface model to compute an estimate 

for canopy closure. The value for this metric is defined as “the number of returns over a 

specified height threshold divided by the total number of returns within each cell” 

(McGaughey, 2007). The cell size and height break are specified by the user. The height 

break parameter used in this analysis 2 meters or approximately 6 feet to capture the 
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percent cover of the tree canopy and to simulate the height of a field observer’s eye 

to make the measurement comparable to traditional percent cover measurements.  

 

Canopy Height Model – The canopy height model (CHM) is a product of the raw 

LIDAR points and the bare earth model. The canopy model tool uses a switch to include 

the bare earth model to subtract the ground elevations from the return elevations. This 

creates a CHM that allows for comparison of tree heights without the effect of elevation.  

This is an important difference with the canopy surface model (CSM) which does not 

account for the effect of elevation in tree height (McGaughey 2007). The CHM is an 

important intermediate and is the input for the canopy maxima tool.  

 

Canopy Maxima Tool- This tool generates a point layer containing the canopy maxima 

points within the analysis area. The basic concept behind this tool is to identify the 

highest LIDAR point within a crown area. The concept and technical details behind the 

tool used in FUSION can be found in Kini & Popescu (2004).  The parameters used in 

this tool will be highly dependant on each dataset and forest type contained in the dataset 

and the output does vary significantly depending on the parameters. This tool creates a 

list of points with X, Y, and Z coordinates that are then used in the following steps to 

create the final two raster datasets. 

 

Stem Density- The number of canopy maxima points in each pixel is counted and a value 

for stem density is assigned to the pixel. This count is a relative measure of density 

between forest stands.  

 

Average Height – The Z coordinates of the point layer created by the canopy maxima 

tool represent the height of the point above the ground surface. The Z coordinate values 

for all of the points falling in a pixel are averaged and, this average becomes the value for 

the pixel or the average height for the pixel.  
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4.5 Products of data preparation 

The results from the data preparation process are raster layers in  the GeoTiff format with 

a pixel size of approximately 8.9916 m by 8.9916 m (29 ft by 29 ft) or about 1/50th acre. 

The choice of pixel size was based on the conditions present in the test site and standard 

conventions for forest inventory. The most important consideration for pixel size in this 

study was to ensure that the pixel size fell in a range that was large enough to include a 

complete canopy of an individual mature tree and small enough to detect variation of 

young stands. Examples of the final data layers are shown in figures 3, 4, and 5. 

 
 
Figure 3- Stem density raster data layer.  
Example of the GeoTiff image created for stem density from FUSION. The darker blue represents high 
stem density and lighter color represents lower stem density. Map units in meters. 
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Figure 4- Percent Cover raster data layer.  
Example of the percent cover GeoTiff image created from FUSION. The darker green colors represent 
higher percent cover and lighter green represents lower percent cover. Map units in meters. 
 
 



  21 

 

 

 
 

 
 
Figure 5-Average Height raster data layer.   
Example of the percent cover GeoTiff image created from FUSION. The darker pink colors represent 
greater average height and lighter pink represents lower average height. Map units in meters. 
 
There are a few important considerations when interpreting these data sets. The first is 

the measurement of stem density. This data set is meant to provide a measure of the 

relative difference in stem densities between forest stand types. The process used to 

create this dataset is the reason for this concern. The step prior to creating the stem 

density per pixel is to use the canopy maxima tool in FUSION which identifies the apex 

of individual trees. The number of canopy maxima points is then counted per pixel, 

giving the value for stem density. The algorithms that are used in this tool have a 

tendency to work well for one type of forest, but lose accuracy when analyzing multiple 

forest types. The primary consideration for this dataset becomes accuracy of the stem 

count as compared to true stem density. However, for this application, the actual number 

of trees is not the main concern; it is the ability to distinguish the relative difference 

between the densities of various stand conditions. For example, a mature stand will 

generally have a lower stem density than a young plantation, the data set reflects this 
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difference and is therefore still useful in this application even though it is 

underestimating the true “on the ground” stem densities.  

 

Similar conditions exist for the average height dataset. The goal of this dataset is to detect 

the differences in height between forest stand classes, not the field accuracy of the metric. 

It is well documented that LIDAR height measurements generally underestimate the true 

height of the tree, but not to a significant level to affect operational use (Holmgren 2004, 

Naesset 2004, Andersen et al. 2006). The percent cover estimation generated in FUSION  

has been shown to provide accurate data for the study area.  

 

4.6 Object oriented classification 

The classification procedure for this project closely follows a tutorial released by the US 

Department of Fish and Wildlife Service (USFWS). This tutorial provided the basic 

information about how to use the SPRING program and classification of land cover 

types. The tutorial is available online through the USFWS and is free to download 

(Lindsey & Donnelly 2006). While tutorial was used as a guide, there are several 

differences in the procedure used for this project which are outlined in Appendix 1.  

 

The first step in image classification is to segment the image into objects; this procedure 

is performed by the software package and produces a visual representation of the objects. 

SPRING uses two parameters to segment objects. The first is a minimum difference 

between pixels that determines if neighboring pixels are considered to be the same object 

and the other is a minimum size of an object. The minimum difference is a Euclidean 

distance between values in the pixels (Camara, et al., 1996). The minimum size is given 

in number of pixels, so a value of 10 would prevent the program from creating objects 

less than 10 pixels.  

 

The segmentation values for this dataset were chosen based on visual inspection of the 

segmentation and desired scale of the classification. For both datasets a minimum 

distance of 5 and a minimum size of 10 pixels were chosen after several trials of various 
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values. These values were chosen because they provided enough detail to identify 

smaller classes of interest such as roads, and were not too large to lose distinction 

between similar stand types.  

 

The training phase of the classification process was done with the aid of aerial 

photographs and plot information. Objects within areas containing plot information were  

used as the training objects for each class. The segmented images for 1999 and 2003 were 

trained independently, but an attempt was made to use similar areas in the two datasets. 

Due to the nature of segmentation, objects will differ between datasets, so use of exactly 

the same spatial areas was impossible. Once the training was complete, the classification 

of the image was performed. The final classifications were then exported out of SPRING 

and brought into ArcMap as shapefiles for accuracy assessment.  

 

4.7 Accuracy assessment 

To evaluate the accuracy of the classification, error matrices were generated for each 

classification. Accuracy assessment using an error matrix is a standard accuracy 

assessment procedure for image classification (Congalton & Green 1999, Smith et al. 

2003, Campbell 2007, Lillesand & Kiefer et al. 2008). From the error matrix accuracies 

for each class can be calculated as producer’s and user’s accuracies. Producer’s accuracy 

describes the accuracy by class, of the classification by the classification program. The 

user’s accuracy describes the accuracy a user could expect if they went to a pixel of that 

classification on the ground.  

 

Another important accuracy assessment is Kappa analysis. This analysis is calculated 

from the error matrix and is a “discrete multivariate technique used in accuracy 

assessment for statistically determining if one error matrix is significantly different than 

another” (Bishop et al. 1975). The Kappa analysis produces a KHAT statistic that is a 

measure of agreement between the “actual agreement in the error matrix (i.e., the 

agreement between the remotely sensed classification and the reference data indicated by 

the major diagonal) and chance agreement indicated by the row and column totals” 
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(Congalton & Green 1999).  The KHAT value allows for comparison of the overall 

accuracy between different classifications and is a useful tool for evaluating results across 

dates (Lillesand & Kiefer et al. 2008).  

 

To perform this analysis, a sample of the classified pixels was randomly chosen. A 

uniform grid of 600 points was generated through the Hawth’s Tools extension in 

ArcMap at a spacing of 75 meters by 75 meters (Beyer, 2004). This grid was overlaid on 

the classified images; pixels that contained points from the grid were evaluated for 

accuracy of classification by visual inspection of an ortho-rectified aerial photograph and 

comparison to plot data where available, the configuration of the grid is shown in figure 

6. Pixels with mixed classifications within the pixel were thrown out and not considered 

in the accuracy assessment. The results of the visual classifications are explained in the 

following section. From the completed error matrices, a KHAT accuracy value was 

calculated for each matrix along with the overall accuracy of the matrix, producer’s 

accuracy and user’s accuracy of each class (Congalton, R. G. and Green, K. 1999).  
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Figure 6- Location of accuracy assessment points.  
This map shows the accuracy assessment grid overlaid on the SPRING classification and 1999 
orthophotograph. There are 600 accuracy assessment points displayed in light blue circles across the study 
area. Map units in meters. 
 
To test the significance of the classifications, a Z-statistics was calculated. The Z-statistic 

was calculated from the KHAT values and their variance. The process used to compute 

these Z-statistic is described in Congalton & Green (1999) and is a standard process for 

evaluating image classifications (Smith et al. 2003). The Z-statistic was calculated for 

both classifications to test if the classification was significantly different than a random 

classification (Congalton &Green 1999). 
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5. Results 

5.1 Classification results 

The final results from this research are stand type maps produced from the classification 

process. These maps demonstrate the method developed through this project and provide 

an initial assessment of the accuracy of the method. The results from the classifications 

are shown in Figure 7 and 8. These results demonstrate the ability of this method to 

detect changes due to operational activities. The 2003 classification detected a new clear-

cut and road in the northwestern corner as well as a new road in southeastern portion of 

the study site highlighted by the red circles. The ability of this method to detect changes 

due to operational activities is critical as a tool for harvest tracking and planning. Other 

important results from the stand maps are the changes observed in forest condition which 

are reflected in change of classification. The “young 1” classifications progressed to the 

“young 2” class in many areas, this is most apparent change occurs in the northern unit 

above the patch cut area. Another progression occurred in the southwestern corner of the 

study area, the many of the “young 2” classifications progressed to the “intermediate” 

class.   

 

Other changes between the classifications can be attributed to several sources related to 

the datasets and methods. While the data layers for each dataset were created using the 

same method, the LIDAR acquisitions between dates have slight differences that effect 

final classification. For example, changes in young stands will affect the values for the 

average height and percent cover data layers more than the older classes since growth 

rates are much greater in younger stands. It would be expected that the height growth in 

these young stands will change the metrics enough to give different average height values 

between dates.  

 

Another factor contributing to the difference between classifications is related to the 

object-oriented classification method. Objects are created based on the parameters set by 

the user and the pixel values in the data sets. While the segmentation parameters were the 

same between datasets, the data layers comprising the datasets for each date are not, thus 
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creating unique objects for each date. This affects the training procedure as well 

because the objects are not spatially the same, and slightly different areas are used for 

training sites. This in turn affects the final classification and explains some of the 

differences between classifications. 
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Figure 7-1999 Classification results.  
This map depicts the final classification results for the 1999 LIDAR acquisition. The stand map is overlaid 
on the 1999 orthophotograph. Map units in meters. 
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Figure 8- 2003 Classification results.  
This map depicts the final classification results for the 2003 LIDAR acqusition. The stand map is overlaid 
on the 1999 orthophotograph. Areas of new operational activities detected in the classification are circled in 
red. Map units in meters. 
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5.2 Accuracy Assessment of Classifications 

To perform the accuracy assessment, a sample of the classified pixels were chosen be 

evaluated. A uniform grid of 600 points was generated through the Hawth’s Tools 

extension in ArcMap (Beyer 2004) at a spacing of 246 ft by 246 ft. This grid was overlaid 

on the classified images; pixels that contained points from the grid were evaluated for 

accuracy of classification by visual inspection of the ortho-rectified aerial photograph and 

comparison to plot data where available. Pixels with mixed classifications within the 

pixel were not considered in the accuracy assessment. This sample of pixels was used to 

construct the error matrices for each date. The results of the accuracy assessment process 

are shown in figures 9 and 10. These figures give a visual representation of the visual 

classification of each sample pixel in relation to the classification. 

 

 
Figure 9-Results of accuracy assessment for 1999 classification. 
This map displays the pixels that were used in the accuracy assessment of the 1999 classification. The 
colored pixels represent the class given from visual classification.  The red pixels represent pixels that were 
not used in the accuracy assessment because they contained more than one class within the pixel. Map units 
in meters. 
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Figure 10-Results of accuracy assessment for 2003 classification. 
This map displays the pixels that were used in the accuracy assessment of the 2003 classification. The 
colored pixels represent the class given from visual classification.  The red pixels represent pixels that were 
not used in the accuracy assessment because they contained more than one class within the pixel. Map units 
in meters. 
 

The results of the accuracy assessment for both datasets are shown in the following 

tables. The complete error matrix for the 1999 and 2003 datasets are reported in table 3. 

The error matrix reports a variety of information about the accuracy of a classification. 

The columns of the error matrix represent the reference data (visual verification), the 

rows represent the classification and the major diagonal represented in bold numbers 

reports the correctly classified sample pixels (Congalton & Green 1999).  
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Table 3- Blue Ridge classification error matrices. 
The error matrix generated from the accuracy assessment process. The error matrix is then used to calculate 
the producer’s accuracy, user’s accuracy and KHAT value for the classification. The bold diagonal 
numbers show the number of correctly classified sample pixels. Table A is the error matrix for the 1999 
dataset and table B is for 2003.  
 
A) Error matrix for 1999 classification. 
      

Visual Classification 
SPRING 
Classification Mature Thinned Intermediate Young 1 Young 2 Clearcut/road Row 

Total 
Mature 196 0 0 0 0 0 196 

Thinned 16 27 2 0 0 0 45 

Intermediate 5 0 66 0 0 1 72 

Young 1 0 0 0 17 19 1 37 

Young 2 0 0 14 5 43 2 64 

Clearcut/road 4 5 1 2 3 62 77 

Column Total 221 32 83 24 65 66 491 

 
B) Error matrix for 2003 classification.  
     

Visual Classification 
SPRING 
Classification Mature Thinned Intermediate Young 1 Young 2 Clearcut/road Row 

Total 
Mature  215 0 0 0 0 0 215 

Thinned 2 16 0 0 0 0 18 

Intermediate 11 0 62 0 2 0 75 

Young 1 0 0 0 13 7 5 25 

Young 2 2 0 3 5 52 0 62 

Clearcut/road 4 8 0 4 0 68 84 

Column Total 234 24 65 22 61 73 479 

 
   
The error matrix is the basis for calculating the producer’s accuracies, user’s accuracies, 

KHAT and Z-statistics for each dataset. The producer’s accuracy, users accuracy, overall 

and KHAT value for each dataset are shown in table 4. These accuracy assessments show 

promising results for the method developed in this research. Current techniques used for 

forest stand delineation are variable across landowners and are expected to produce 

accuracies of about 80% to 90%; these accuracies depend greatly on the skill of the 
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analyst, quality of data and tools used in the process (Terry Curtis, pers. comm., WA 

State Dept. of Natural Resources, July, 1, 2008). In addition, Landis and Koch (1977) 

characterize KHAT values greater than 80% as representing strong agreement and KHAT 

values between 40% and 80% as having moderate agreement. The KHAT value for 1999 

is 78.20% and the KHAT value for 2003 is 84.46% which represents a moderate 

agreement for 1999 and a strong agreement for 2003.  
Table 4- Accuracies for Blue Ridge classifications. 
This table reports the accuracies and KHAT values for the 1999 and 2003 classifications. Producer’s 
accuracy describes the accuracy by class, of the classification by the classification program. The user’s 
accuracy describes the accuracy a user could expect if they went to a pixel of that classification on the 
ground. The overall accuracy describes the overall accuracy attributed to the individual classification and 
the standardized KHAT value allows for comparison of overall accuracies between classifications. 
    
A) 1999 classification accuracies and KHAT values. 
          

Class Producers  Users 
Mature  88.69%  100.00% 
Thinned 84.38%  60.00% 
Intermediate 79.52%  91.67% 
Young 1 70.83%  45.95% 
Young 2 66.15%  67.19% 
Clearcut/road 93.94%  80.52% 
Overall Accuracy 83.71% 
KHAT  78.20% 
KHAT Variance 0.0001088 

 
B) 2003 classification accuracies and KHAT values. 
 

Class Producers  Users 
Mature  91.88%  100.00% 
Thinned 66.67%  88.89% 
Intermediate 95.38%  82.67% 
Young 1 59.09%  52.00% 
Young 2 85.25%  83.87% 
Clearcut/road 93.15%  80.95% 
Overall Accuracy 88.49% 
KHAT  84.46% 
KHAT Variance 0.0000878 

 
The final assessment was to calculate a Z-statistic to test if the classifications were 

significantly different than a random classification. This test is a two-tailed Z-test which 

assumes infinite degrees of freedom and is tested at the 95% confidence level (Congalton 

& Green 1999). In this case a Z- statistic value greater than 1.96 proves that the 
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classification is significantly different than random. The Z-value for 1999 was 

calculated to be 74.96 and the Z-value for the 2003 classification was 90.13, so both 

classifications are significantly different than a random classification.  
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6. Discussion 
 
6.1 Implications for operational use 

The intended application of this method is to generate stand type maps to be used in 

operational level forest planning and management. Therefore, the user’s accuracy will 

impact on the quality and usefulness of the final product. In this section, examples of 

classes with low user’s accuracy will be examined and explained. The first example is the 

relatively low user’s accuracies associated with the “Thinned” class in the 1999 

classification. This may be attributed to confusion of open areas within a mature stand. 

This confusion is apparent from the error matrix; the greatest number of misclassified 

pixels in the “thinned” were classified as “mature” in the visual classification. While at 

the pixel level, there is a gap or an obvious lower density of trees, the surrounding stand 

is “mature” and was visually classified as such. Figure 11 depicts a case where a 

“thinned” pixel is located in an otherwise “mature” stand. 

   
 
Figure 11-Misclassified pixel, “thinned” class. 
This graphic is an example of a condition affecting the accuracy of the “thinned” class in the 1999 
classification. The pink dot represents a sample point, and the pixel containing that point was evaluated for 
accuracy of classification. In this case, the sample point falls in a pixel classified as “thinned” in orange 
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when it should have been classified as “mature” in purple due to the mature trees and surrounding 
stand conditions. Map units in meters. 
 
Another factor contributing to the low user’s accuracy of the “thinned” class in the 1999 

data is the stand that received a thinning treatment. The low user’s accuracy could result 

from the adjacent clear cut area and confusion between pixels containing no trees in the 

thinned area. At the pixel level, the thinned area pixels that do not contain any vegetation 

and could be classified as either class. However, on a stand level, these pixels present a 

problem, even if there is no vegetation in the pixels within the thinned area, it should be 

considered “thinned” rather than “clearcut/road” because of  the association with the 

treatment in that area. Figure 12 below demonstrates the problem of pixels with no 

vegetation being classified incorrectly in the thinned area. 

 
Figure 12- Incorrectly classified pixel in thinned stand. 
This graphic describes another factor affecting the accuracy of the “thinned” class in the 1999 data. The 
pink dot represents a sample point, and the pixels containing a point are evaluated for accuracy of 
classification. This example depicts the misclassification of a pixel in the thinned stand on the eastern half 
of the study area as “clearcut/road” denoted by the gray coloring. This example represents an interesting 
condition as it is not classified incorrectly if it is simply evaluated at the pixel level, it is clear from the 
orthophotograph that there is no vegetation in the pixel. However, in the greater context, this pixel is 
misclassified because it is in the center of the thinned treatment block and is not associated with a clear cut 
or road. Map units in meters. 
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Another area of low user’s accuracy in the 1999 classification is the “young 1” and 

“young 2” classifications. The confusion between the two classifications is evident from 

the error matrix, more pixels were classified incorrectly in the “young 1” class than were 

classified correctly, and almost all of the misclassified pixels should have been “young 

2.” This confusion between the two classes can be explained by the presence of gaps in 

areas of both classes and the relative similarity between both of these classes. The 

scenario that gaps are causing lower accuracy in these classes is shown in figure 13. This 

area is in the northwestern portion of the study area and is a young stand that should fall 

in the “young 2” class. However, areas where gaps in the stem density and percent cover 

exist due to brush pockets or possibly failed seedlings, have been classified as “young 1.” 

This example represents a common problem with the “young 1” and “young 2” classes 

and greatly affects the user’s accuracy of these classes. 

 
Figure 13- Incorrectly classified pixels in “young 2” stand. 
This graphic describes the primary factor affecting the accuracy of the “young 1” class in the 1999 data. 
The pink dot represents a sample point, and the pixel containing that point is evaluated for accuracy of 
classification. This example depicts the misclassification of pixels in a “young 2” stand, the pixels circled 
in red are incorrectly classified as “young 1.” This is possibly due to the presence of brush pockets, failed 
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seedlings or other factors. This example represents a common problem with the “young 1” and 
“young 2” classes and greatly affects the user’s accuracy of these classes. Map units in meters. 
 
The primary source of confusion in the “young 2” classification for the 1999 data is with 

the “intermediate” class. While the error matrix shows that there were some pixels 

misclassified in other categories, the greatest numbers of misclassified pixels were with 

the “intermediate” class. Figure 14 gives an example of this type of misclassification. The 

cause of this misclassification is possibly due to a slight change in the forest structure 

causing a reduction in crown cover, or stem density changing the classification. 

 

 
 
Figure 14- Incorrectly classified pixels in “intermediate” stand. 
This graphic describes the primary factor affecting the accuracy of the “young 2” class in the 1999 data. 
The pink dot represents a sample point, and the pixel containing that point is evaluated for accuracy of 
classification. This example depicts the misclassification of a pixel in an “intermediate” stand, the pixel 
circled in red is incorrectly classified as “young 2” possibly due to a slight change in stem density or 
percent cover. Map units in meters. 
 

A similar scenario exists with the “young 1” class in the 2003 classification. In the case 

of the 2003 data, there are areas on the edges of clear cuts that are being classified as 

“young 1” due to the presence of brush and opportunistic vegetation entering these areas. 
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Figure 15 gives an example of a clear cut area with pockets of “young 1” 

classification near the edge of the cut and in an area of brush regeneration resulting in a 

misclassified pixel. Also, the same case with confusion between “young 1” and “young 

2” classes exists in the 2003 classification as in the 1999 classification. Areas of lower 

density, brush or gaps in the “young 2” stands are classified as “young 1” due lower 

density or height values associated with open areas or brush pockets. These areas may 

also represent areas of high seedling mortality due to poor planting techniques, 

overtopping by brush or animal browse.  

 
 
Figure 15- Misclassification in a clear cut. 
An example of misclassification of the “young 1” class in the 2003 classification. The blue dot represents a 
sample point, and the pixel containing that point is evaluated for accuracy of classification. In this example, 
an area within the large clearcut in the eastern half of the study area is misclassified as “young 1” in light 
green. This misclassification is likely due to the presence of opportunistic brush growing in the clear-cut. 
Map units in meters. 
 
 
The examples listed above are conditions that the users of these stand maps need to 

consider. This method is not intended to replace local knowledge and field verification, 

but to provide a tool to generate stand information in less time and with greater or equal 
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quality than current practices that rely heavily on manual interpretation. Another 

benefit of this method is that it will help the analyst identify marginal areas that will 

require additional verification quickly and more easily. Areas with low user’s accuracy 

will vary depending on many factors and will be different for every dataset and forest 

type. Keeping these potential sources of variability in mind, the user’s accuracies listed in 

this example should be adequate for use by managers and field staff for stand typing for 

forest inventory design or operational forest planning decision making. 

 

6.2 Method development and repeatability  

The primary objective of this project was to develop and test a method for forest stand 

delineation with LIDAR data. This objective was met through various aspects of this 

project. The first step to achieving the objectives of this research was to develop the 

method for stand delineation from LIDAR. The methods described are the products of a 

development effort that included software choice, development of procedures and desired 

data products. The second aspect to meeting the stated objectives was to test the methods 

developed on the Blue Ridge study site and asses the accuracy of the classifications; this 

was met through the use of an error matrix and reporting accuracies associated with each 

classification.  

 

The final and most challenging aspect to meeting the objectives of this study was to 

create a repeatable process for the methods that were developed through this research. 

This final objective was met through Appendix 1, which serves as a user’s manual for the 

method. Repeatability of this method has not been tested with multiple users. This is the 

last step in completely meeting the objectives of this research. The testing of this method 

will be in its operational use for the BLM and other individuals or agencies that have 

access to this research. It is expected that adjustments and slight changes to the method 

will occur when it is put into large scale operational use.  
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6.3 Limitations   

The limitations of this method relate to the data extraction and software used in 

developing the method. The identification of canopy maxima points to derive stem 

density and average height per pixel is one such limitation. The algorithm used by 

FUSION to identify canopy maxima points is based on a paper in 2004 by Kini and 

Popescu and uses a variable window to identify tree crowns and canopy maxima. This 

only one of many methods to identify canopy maxima. The method used in FUSION has 

a known limitation in forests of varying conditions. This problem manifests itself by 

underestimating canopy maxima points for one forest condition, while producing an 

acceptable prediction for another forest condition. For example, FUSION will 

underestimate mature forest canopy maxima points and give a good estimation of young 

forest conditions or vice versa, but not both.  

  

The identification of canopy maxima points and the known problem with FUSION leads 

to another challenge with the values of the stem density and average height raster layers. 

These layers are derived from the information contained in the canopy maxima points, so 

the underestimation of individual canopy maxima points then underestimates the stem 

density and average height in the associated data layers. This is a problem when 

comparing the derived stem density and average height to ground measurements. The 

method used to segment and classify stand classes does not need to have accurate actual 

values, but instead accurate relative values between datasets to determine stand classes. 

This means that it is not important to have the actual tree counts or heights, just that the 

values in the dataset represent a consistent difference between stand classes.  

 

Another weakness to this method is the choice of the image segmentation and 

classification package used for analysis. SPRING was chosen due to financial constraints 

and the relative ease of learning the software. Along with this however, SPRING does not 

have the full functionality for hierarchical classification available in commercial 

packages such as eCognition or Feature Analyst. Hierarchical classification allows for 

classes to be defined in steps rather than through one training exercise. For example, 
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clear-cuts and roads could be segmented and classified first, then masked and the 

next class could be segmented and classified and so on. This would allow for a more 

refined classification and could possibly address some of the misclassifications seen in 

this research. Another weakness of SPRING is the lack of ability to import shapefiles into 

the analysis for training. While the tool is present in the program, it did not appear to 

work, one of the challenges with using an unsupported software package. This tool would 

have been useful in precisely defining objects that contained plot locations to improve 

training consistency. Again, commercial packages have the functionality to import 

shapefiles such as plot locations to assist with training before classification. 

The final limitation to consider is the skill of the analyst using this method. The method 

was designed for an analyst with a strong foundation in GIS, image interpretation, a basic 

understanding of LIDAR data and knowledge of forest management. Familiarity with 

local forest conditions, regional silviculture and agency or company management 

objectives is necessary to appropriately perform this method. Therefore a person or team 

of people with field experience in the area and a background in geospatial analysis is 

necessary. It is not unrealistic to expect to find the necessary technical skills and field 

knowledge within an agency or company to use this method; it may however represent a 

significant amount of time spent in collaboration or training of an individual to complete 

the analysis.  
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7. Recommendations 

In the process of designing and implementing this method, a few ideas were generated  

for expanding and improving this work. The first, as mentioned in the previous section, is 

to invest in commercial image classification software to increase the functionality 

available for analysis. This would be most feasible for large companies or agencies that 

have the financial ability and personnel to dedicate to learning the software. In many 

cases, large natural resource companies or agencies already own a license for one of these 

software packages. In the case of smaller agencies or companies looking to use this 

method, the best choice may be to use SPRING and be aware of the limitations.  

 

One of the limitations of this method is that only one method for identifying canopy 

maxima was used. Investigation of other methods for identifying canopy maxima and 

comparing the classification results may provide interesting insight into which methods 

work best. In addition, these canopy maxima methods should be tried across a variety of 

forest types and management operations to discover the most appropriate canopy maxima 

method for various conditions. It is likely that regional or ownership level algorithms will 

need to be developed to improve upon canopy maxima identification. 

  

The third recommendation involves future research. This method should be tried on a 

large scale, operational size land area. At the moment, this is limited by access to LIDAR 

data acquisitions of such ownerships. Large scale acquisitions will have a much greater 

variety of forest conditions and management operations. Classification classes will have 

to consider the variation present in an analysis area and the management objectives. In 

the case of the BLM, the analysis of large scale acquisitions may need to be scaled down 

to a district or partial district level to produce information useful at the operational level. 

 

The final recommendation is to investigate the addition of other stand parameters into the 

segmentation and classification. As LIDAR data processing improves, it may be possible 

to add additional raster layers that will give more information about the stand and 



  44 

 

 

 
 

therefore improve the ability to classify stands. Information about species, diameter 

at breast height (dbh), basal area and height to live crown are common metrics measured 

in field sampling, but at the moment are not possible to directly measure from LIDAR 

data. This additional information may allow for more specific descriptions of stands and a 

finer scale to differentiate stand types.  
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8. Conclusion 

While there has been much research in the use of LIDAR data for forest management 

measurements, little of this research has focused on the operational use of these methods. 

With LIDAR acquisitions continuing to become more accessible and moving towards a 

standard in the forest industry, companies and agencies will be investing in methods to 

utilize the data. Current stand delineation methods utilizing aerial photograph 

interpretation have long been criticized for the time, cost and dependency on the 

interpreter to produce stand maps. Stand metrics necessary to delineate forest stands can 

now be derived from LIDAR using automated software packages. These metrics can be 

segmented and classified by an analyst, saving considerable time and cost for the land 

owner. The method presented is a first step in meeting the goals of the BLM and other 

agencies and companies looking to move forward with LIDAR as a forest management 

tool. 
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Appendix 1- User’s guide for LIDAR based Stand Delineation 
 
About this User’s Manual- This manual is designed for use with ArcMap 9.2. There are 
three additional software packages that can be downloaded for free from the world wide 
web. This user’s manual and required programs are designed for the Windows operating 
system.  
 
Programs Required: 

• ArcMap 9.2 
• SPRING 4.x 
• FUSION- Current Version 
• Hawth’s tools  

 
Data:  

• The data used in the tutorial is the FUSION example data.  It is available for 
download at  http://forsys.cfr.washington.edu/fusion/fusionlatest.html 
This data is courtesy of Robert J. McGaughey at the Forest Service Pacific 
Northwest Research Station. 

 
 

http://forsys.cfr.washington.edu/fusion/fusionlatest.html
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Part I - Downloads: 
 
1.1 SPRING- This software was developed by Brazil's National Institute for Space 
Research as a “a state-of-the-art GIS and remote sensing image processing system with 
an object-oriented data model which provides for the integration of raster and vector data 
representations in a single environment.” (SPRING website). SPRING is available for 
download in English at: http://www.dpi.inpe.br/spring/english/index.html. 
 
To set up SPRING on your computer, please follow these steps. 
 

1. Go to http://www.dpi.inpe.br/spring/english/index.html and click on the 
“downloads” tab at the top of the page. 

 
 
2. On the “Download” page you will be asked to register before you can download 

the software. Please enter a valid email address and click on the “Subscribe” 
button. 

 

 

http://www.dpi.inpe.br/spring/english/index.html
http://www.dpi.inpe.br/spring/english/index.html
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3. The following screen will appear, please fill out the required information and 
click 

 
 

4. You will now be able to download the current version of SPRING. Go back to the 
download page and enter your email and password and choose the correct version 
for your operating system and click “Download.” 

 

Version 
Selection 
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5. From this screen choose the “Install.exe” from one of the download sites. Make 

sure to choose the version in English! 

 
 

6. Choose to “Save File” and specify where to save the install_spr433.exe file to. 
 

     

7. Once the file has downloaded, run the install_spr433.exe from the directory where 
it was saved. Click “Next” to start the install. 
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8. Click “Next” to accept the license agreement. 
9. Choose the directory where you would like to install SPRING, and click “Next” 

to start the install. 
 

   

10. Choose to only install the SPRING program, and click “Next.” 
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11. Click “Next” on the following screen and the install will begin. Once the install is 
complete, click on the “Finish” button and you will exit the install wizard. The 
SPRING program has a desktop shortcut or can be accessed through the Start-
>All Programs->SPRING. 

12. You have now completed the installation of SPRING. 
 
 
1.2 FUSION-  FUSION was developed by Robert McGaughey at theUSFS Pacific 
Northwest Research Station. This program is primarily a viewing tool for LIDAR data, 
but also provides basic analysis that is important to the foundation of this project. The 
current version of FUSION can be found at: 
http://forsys.cfr.washington.edu/fusion/fusionlatest.html this website is updated by the 
developers of FUSION and will contain the latest public release of FUSION. 
 

1. From the webpage above, click on the “Install.exe” at the bottom of the page. 

 

Install.exe 

http://forsys.cfr.washington.edu/fusion/fusionlatest.html
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2. Choose to save the file and choose the destination directory. 
3. Run the FUSION_Install.exe from the directory in which it was saved. Click on 

“Next” when this screen appears. 

 

4. Choose the directory you would like FUSION installed (Recommended to use 
defaults). Click “Next.” 
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5. Choose the Start menu folder you would like the FUSION shortcut to reside in, 
then click “Install” 
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6. This will start the install process, this may take several minutes. When it is 
finished, click “Finish” to exit the installation. 

7. You have now completed the install of FUSION. 
________________________________________________________________________ 
 
Hawth’s Tools- This program is a set of ecology analysis tools that are packaged as an 
extension for use in ArcMap. The software is free and can be downloaded at 
http://www.spatialecology.com/htools/download.php . This extension will be used later in 
the tutorial for accuracy assessment. 
 
To set up this extension: 

1. Go to the link above and click on “Download Hawth’s Tools.” Follow the 
installation instructions below. 

 Installation Instructions: (From website) 
1. Download Hawth's Tools using the link below. Save the WinZip file to your hard drive 
(anywhere), and unzip it. (If you do not have a copy of WinZip, you can download it 
from http://www.winzip.com.) 
2. Run the program called htools_setup.exe. (Note that this program can also be used to 
uninstall the software). 

http://www.spatialecology.com/htools/download.php
http://www.winzip.com/
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Click here to  
Start download. 

 
 
 
Part II- Generation of Raster Data 
 
This portion of the manual is comprised of two sections. The first will lead you through 
the process of dealing with the raw LIDAR products and work within FUSION. The 
second section will focus on the analysis within ArcMap. The final products of this 
section will be three raster datasets that will then be used in SPRING. 
 
Section 1- Working with FUSION command lines 
 
Software needed: 

• FUSION (see downloads section) 
 
Data Required: 

• Ground Model (demo_4800K_UTM.dtm) 
• LIDAR points (demo_4800K_UTM.lda) 
• Aerial Photograph (demo_4800K_UTM.jpg and demo_4800K_UTM.jpgw) 
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Data for this section: 

1. Download the example data from 
http://forsys.cfr.washington.edu/fusion/fusionlatest.html which is the same page 
where you downloaded the FUSION software. Click on example data. Make sure 
to download the UTM example data! 

 

Example data 
download 

 
2. Choose “Run” or “Save” from the pop up menu, if you chose to save it, remember 

where you saved the file. 

 
 

http://forsys.cfr.washington.edu/fusion/fusionlatest.html
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3. Choose to download both components, and click “Next.” (maybe change this 
when Bob updates webpage) 

 
 

4. Choose the directory to install the example data. Then click “install.” 

 
5. The install will run and when it is finished, click “finish” and you now have 

successfully downloaded the example data. The next portion of this section will 
be working with raw LIDAR points.  
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Working with the FUSION batch files: 
 
This portion of the process will involve the use of command prompts and batch files. All 
of the batch programs are located in the C:\FUSION directory of the computer, unless 
otherwise specified during download. The default will be to run these programs out of the 
C:\FUSION directory, which will require all of the data that is called by the batch file to 
be in that directory, the outputs will also be put there. It is also possible to set the 
environmental variables on the machine to allow for data processing in other directories, 
this manual does not cover how to do this. The FUSION manual has detailed descriptions 
of each tool and the variables available. This manual will focus on the tools needed for 
this process. Make sure that the example dataset being used is in the UTM projection, this 
will cause problems later in the tutorial if using the incorrect datasets. All UTM datasets 
will have “UTM” somewhere in the file name. 

 
1.  Open a command prompt window from the Start menu, by selecting “Run” and 

typing “cmd” on the line.  

 

This is the window that will 
open when you click on “Run” 
from the start menu. Type 
“cmd” to open a command 
prompt, and click “ok” 

Choose “Run” from the 
Start menu 

 
2. The command prompt window will open. At the prompt, type “cd c:\FUSION” 

and press “enter” to change the directory to the location of the batch programs. 
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3. Now we are ready to work with the batch files in FUSION. The files that will be 
used in this step are the raw LIDAR points (demo_4800K_UTM.lda) and the 
bare ground model (demo_4800K_UTM.dtm). Make sure that these files are in 
the C:\FUSION directory on your computer. 

 
FUSION batch file tools: 
The tools need for this tutorial are described in the following section. The FUSION user’s 
manual gives a more complete description of the tool and the available switches. The 
tools are presented in chronological order for this method.  
 
1. Percent Cover Calculation: 
 
The first step is to use the Cover batch program in FUSION to create a percent cover 
estimation for the study area. The description from the FUSION user’s manual is:  
“Cover computes estimates of canopy closure using a grid. Output values for cover 
estimates range from 0.0 to 100.0 percent. Canopy closure is defined as the number of 
returns over a specified height threshold divided by the total number of returns within 
each cell. In addition, Cover can compute the proportion of pulses that are close to a bare-
ground surface model to help assess canopy penetration by the laser scanner. With the 
addition of an upper height limit, Cover can compute the proportion of returns falling 
within specific height ranges providing estimates of relative vegetation density for 
various height strata.” (McGaughey, R.J., 2007). 
 
General syntax: 
Cover [switches] groundfile coverfile heightbreak cellsize xyunits zunits coordsys zone 
horizdatum vertdatum  datafile1 
 
The syntax that will be used for this data set: 
Cover  demo_4800K_UTM.dtm demo_cover_89916m_utm.dtm 2 8.9916 m m 1 10 2 2 
demo_4800K_UTM.lda 
 
Explanation of Syntax: The cell size of this analysis is based on 1/50 acre. 8.9916m by 
8.9916m  is approximately 1/50th of an acre and a common area used in forest inventory. 
The data is in meters and projected in UTM NAD 1983  NAVD88 zone 10 north, which 
explains the rest of the syntax (see FUSION user’s manual for more information). 
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1. Copy and paste the syntax give above into the command prompt window and 
press “enter”. This will start the batch program, and may take a while to run 
depending on your computer. Status information will be displayed as the program 
runs. 

 
 
DTM2TIF Tool: 
The second step for the percent cover dtm will be to create a geo tiff file from the dtm. 
This will create the final product to be used in SPRING and will allow for the percent 
cover image to be viewed in ArcMap. This step will use the DTM2TIFF tool in FUSION. 
This tool will also be used to create the stem density and average height geo tiff files later 
in the tutorial.  
 
General syntax: 
DTM2TIF [switches] inputfile [outputfile] 
 
The syntax that will be used for this data set is: 
DTM2TIF demo_cover_89916m_utm.dtm demo_cover_89916m_utm.tif 
 

1. Copy and paste the syntax give above into the command prompt window and 
press “enter”. This will start the batch program, and may take a while to run 
depending on your computer. Status information will be displayed as the program 
runs. 

 
 
Explanation of Output: This generates a geo tiff file from the 
demo_cover_89916m_utm.dtm that was created in the previous step. There are two files 
output from this process, a tiff image file (.tif extension) and a world file (.tfw extension). 
Both files will have the same name but be distinguished by the extensions, any changes to 
the file name must be made on both files or the geo tiff will not function correctly. It is 
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important to note that BOTH of these files must be moved when moving this file 
around in order to preserve the functionality of the geo tiff.  

 
2. Canopy Maxima- Generation of the canopy maxima points is a two step process that 
requires the use of the Canopy Model tool and the Canopy Maxima tool in FUSION. 
 
 
Canopy Model Tool- 
The second program that will be used in this process is the Canopy model tool. This tool 
uses the raw LIDAR points (demo_4800K_UTM.lda) and the ground surface model 
(demo_4800K_UTM.dtm) to create a model of the surface of the canopy. The ground 
model is used to “subtract the ground elevations from the return elevations to produce a 
canopy height model” (McGaughey, R.J., 2007). The canopy height model is an 
intermediate step to producing the canopy maxima points. 
 
General Syntax: 
CanopyModel [switches] surfacefile cellsize xyunits zunits coordsys zone horizdatum 
vertdatum datafile1 

 
The syntax that will be used for this data set: 
CanopyModel /ground:demo_4800K_UTM.dtm demo_canopyheight_UTM.dtm 1.5 m m 
1 10 2 2 demo_4800K_UTM.lda 

 
Explanation of Syntax: The ground switch is needed to create a canopy height model. 
The cell size is 1.5 meters, which is approximately 5 feet. The data is in meters and 
projected in  UTM NAD 1983  NAVD88 zone 10 north, which explains the rest of the 
syntax (see FUSION user’s manual for more information). 
 

1. Copy and paste the syntax give above into the command prompt window and 
press “enter”. This will start the batch program, and may take a while to run 
depending on your computer. Status information will be displayed as the program 
runs.  

 
 

Canopy Maxima Tool- 
The next step in FUSION is to generate the canopy maxima points using the Canopy 
Maxima tool. This tool uses a variable analysis window to identify local maxima points 
as well as information about crown height and width. The output of this process is a 
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comma separated value file (.csv) that will need to be manipulated in the FUSION 
GUI program before returning to the command line analysis. This process will be covered 
in subsequent sections. This tool uses the Canopy Height Model produced in the previous 
step. 
 
* Note about Canopy Maxima* 
Methods for finding canopy maxima with LIDAR is a relatively new and changing 
process. The user should be aware that at the time of this manual being written, there are 
several tools that are available to find canopy maxima and depending on the purpose of 
the project, this tool may not be the best. The FUSION canopy maxima tool was chosen 
for this project and manual due to the availability of the tool and its ability to process 
large areas. However, this choice was made with the awareness that the canopy maxima 
tool underestimates the true maxima in forest stands. Currently, this tool will work well 
for either young stands or mature stands based on the parameters that are set. Mixed 
forest areas such as the example data pose a problem in that it will provide very good 
stem density information for one stand type and not the others. For more information 
about the methodology used in the Canopy Maxima tool see: 

Kini, A.U. &  Popescu, S.C. (2004, September, 16). Treevaw: A versatile tool for 
analyzing forest canopy LIDAR data- A preview with an eye towards the future. 
Paper presented at the 2004 ASPRS Images to Decisions: Remote sensing for GIS 
applications conference, Kansas City, MO. 

With that said, this project is interested in creating a density layer that represents the 
densities of stands relative to one another, not an absolute count of trees per acre. The 
information generated about stem density in this method will not accurately represent the 
conditions on the ground, but will provide a data layer that will act as a relative measure 
of density between stands for the image segmentation in SPRING.  
 
General Syntax: 
CanopyMaxima [switches] inputfile outputfile 

 
The syntax that will be used for this data set: 
CanopyMaxima /mult:0.5 /threshold:2 demo_canopyheight_UTM.dtm 
demo_canopymaxima_utm.csv 
 
Explanation of Syntax: The choice of these switches and the values here are specific for 
this dataset. It is likely that for each data acquisition, there will need to be adjustments 
made to these values. The values were chosen for this dataset because it produced the 
best results for comparison of densities between stands (see note above).  
 

1. Copy and paste the syntax give above into the command prompt window and 
press “enter”. This will start the batch program, and may take a while to run 
depending on your computer. Status information will be displayed as the program 
runs. 
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2. A file called demo_canopymaxima_UTM.csv will be located the C:/FUSION 
directory. This file contains the information for each canopy maxima pint. This 
file will be used in the next section to produce the stem density and average height 
data layers.  

 
 
Section 2- Working with FUSION GUI 
 
This section will be a brief departure from the FUSION command line interface used in 
the previous section. Once the needed files are created, the command lines will be used 
again to produce the final two data layers, stem density and average height.  
 
Software needed: 

• FUSION (see downloads section) 
 
Data Required: 

• Canopy maxima file from previous section (demo_canopymaxima_utm.csv) 
 
 

1. Open the FUSION GUI in Start -> Programs -> FUSION. 
 
When the program opens go to the top menu bar and open Tools -> Data Conversion  
-> Import generic ASCII LIDAR data. 
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2. This will open a dialogue box for importing ASCII and CSV files. This tool will 
be used to create “point clouds” from the canopy maxima file that represent a flat 
ground model and the canopy maxima points. To do this, the canopy maxima .csv 
file must be converted into two .lda files.  

3. To create the flat ground model, click on the first “Browse” button and navigate to 
the demo_canopymaxima_utm.csv file. Click on the second “Browse” button and 
give the output file a name of “demo_flat_ground.lda” in the C:\ FUSION 
directory. 

 

 
 

4. The next step is to set the parameters for the import of the data. In the “Start on 
import row” type 2. This will start the data below the column headers. In the 
“Column assignments” dialogue box Set X to “field 2”, Y to “field 3” and 
Elevation to “field 9” the remaining fields should be set to “none”. (Setting the 
elevation to field 9, or 0 will create a flat surface when taken through the future 
steps.) Click on “Import data” and then close when the import is complete.  
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Start import on row 

This will create the  
.lda for the flat ground 
surface. 

 
5. Repeat this process for the canopy maxima points to create an .lda file for the 

canopy points. Open Tools -> Data Conversion -> Import generic ASCII LIDAR 
data. 

6. Click on the first “Browse” button and navigate to the 
demo_canopymaxima_utm.csv file. Click on the second “Browse” button and 
give the output file a name of “demo_canopy_maxima.lda” in the C:\ FUSION 
directory. 

7. The next step is to set the parameters for the import of the data. In the “Start on 
import row” type 2. This will start the data below the column headers. In the 
“Column assignments” dialogue box Set X to “field 2”, Y to “field 3” and 
Elevation to “field 5” the remaining fields should be set to “none”. (Setting the 
elevation to field 5, uses the height of the canopy maxima points) Click on 
“Import data” and then close when the import is complete.  
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Start on import row 

This will create the 
.lda file for the 
canopy maxima 
points. 

 
8. The demo_flat_ground.lda and demo_canopy_maxima.lda files will now be used 

in the command line interface of FUSION for the final analysis.  
9. Open a command line as described in the previous section, and change the 

directory to C:\FUSION to start the next portion. 
 

1. Grid Surface Create: 
 
This tool will be used to produce the flat ground surface from the demo_flat_ground.lda 
file just created. The importance of this flat ground model relates to the next tool that will 
be used called Grid Metrics. Grid Metrics is generally used on raw LIDAR datasets and 
uses the ground model to normalize the data. Since the data has already been normalized 
through the production of the Canopy Height model, this is not necessary and the flat 
ground model is used as a trick to make the Grid Metrics tool work properly for this 
application. 
 
General Syntax: 
GridSurfaceCreate [switches] surfacefile cellsize xyunits zunits coordsys zone 
horizdatum vertdatum datafile1 
The syntax that will be used for this data set: 
GridSurfaceCreate demo_flat_ground.dtm 8.9916 m m 1 10 2 2 demo_flat_ground.lda 
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Explanation of Syntax: The data is in meters and projected in UTM NAD 1983  
NAVD88 zone 10 north, (see FUSION user’s manual for more information). 
 

1. Copy and paste the syntax give above into the command prompt window and 
press “enter”. This will start the batch program, and may take a while to run 
depending on your computer. Status information will be displayed as the program 
runs. 

 
 
2. Grid Metrics: 
 
This tool will create the two final data layers; stem density per pixel and average height 
per pixel using the points from the demo_canopy_maxima.lda. This tool has several other 
functionalities that are detailed in the FUSION manual. For this exercise, the min points, 
and raster switches will be used. The final output will be two .dtm layers for mean and 
count that will be converted to geo tiff files using the DTM2TIF tool. 
 
General Syntax: 
GridMetrics [switches] groundfile heightbreak cellsize outputfile datafile1 
 
The syntax that will be used for this data set is: 
GridMetrics /minpts:1 /raster:count,mean demo_flat_ground.dtm 2 8.9916 
demo_gridmetrics demo_canopy_maxima.lda 
 
Explanation of Syntax: 
The /minpts switch controls the minimum number of points that have to be in a cell to 
have metrics computed, this sets it to a minimum of 1. The /raster switch creates .dtm 
files for the count of points in a cell (stem density) and the average value for the points in 
the cell (in this case, height). The heightbreak is set to 2 and the cell size is set to the 
standard 8.9916 for the output cell size.  
 

1. Copy and paste the syntax give above into the command prompt window and 
press “enter”. This will start the batch program, and may take a while to run 
depending on your computer. Status information will be displayed as the program 
runs. 
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DTM2TIF Tool:  
 
This tool has been described in the earlier section of this manual, so only the syntax 
needed for this section will be provided. This tool converts dtm files to geo tiff files with 
the associate world file. 
 
General Syntax: 
DTM2TIF [switches] inputfile [outputfile] 
 
The syntax that will be used for this data set: 
Stem density: 
DTM2tif demo_gridmetrics_first_returns_density_only_elevation_count.dtm 
demo_stem_density.tif 
Average Height: 
DTM2tif demo_gridmetrics_first_returns_density_only_elevation_mean.dtm 
demo_avg_height.tif 
 

 
 
Congratulations! You are now finished with the data generation portion of this 
tutorial. The next step will be image segmentation and classification with SPRING. 
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The files that were generated in this part will be located in the C:\FUSION directory 
and will be needed for the next section. 
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 Part III- Segmentation and Classification with SPRING 
 
This portion of the tutorial will deviate from the step by step nature of the previous 
sections. Image classification is a process that is dependant on the individual analyst and 
there are multiple ways to segment, train and classify the same image. This section will 
use a tutorial developed by the US Fish and Wildlife Service in their remote sensing lab 
in Albuquerque, New Mexico.  
 
Software needed: 

• SPRING (see downloads section) 
 
Data Required: 

• Percent cover (demo_cover_89916m.tif) 
• Stem density (stem_density.tif) 
• Average height (avg_height.tif) 

 
Other Downloads 

• USFWS tutorial: http://www.fws.gov/data/documents/SPRING%20Manual%20022306.pdf 
 
 
Download for this section: 

For this section a tutorial developed by the U.S. Fish and Wildlife Service will be 
used. This tutorial was chosen to be used in this manual because it covers the basic 
functionalities of SPRING and image classification. The tutorial is also basis for the 
method used in this project. The primary focus of this section of the manual will be 
as a guide through the USFWS tutorial and explanation of known problems with 
SPRING. The information in this section is intentionally vague. The parameters for 
segmentation, classes and training sites are subjective and will vary greatly 
depending on the goals and skill of the analyst. This section is meant to be a rough 
guide to object orientated classification using SPRING.   
 
1. Download the USFWS SPRING tutorial from: 
http://www.fws.gov/data/documents/SPRING%20Manual%20022306.pdf 
 
2. Print or save the USFWS tutorial for use in the next section. 

 
 
Section I: Guide through the USFWS SPRING tutorial: 
 
This section will go through each part of the USFWS tutorial, numbers correspond to the 
tutorial sections. 
 

2.1 Download and install SPRING- See download section of this manual 
2.2 Acquire and Install ERDAS ViewFinder- Not necessary for this project.  

http://www.fws.gov/data/documents/SPRING%20Manual%20022306.pdf
http://www.fws.gov/data/documents/SPRING%20Manual%20022306.pdf
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2.3 Reproject and Resample Imagery with ERDAS ViewFinder- Not 
necessary, projections set in ArcMap 

2.4 Create Database, Project Category and Import Image- Follow these 
instructions as is. Name the database and project relevant to the data.  Set the 
bounds to the extent of the geo tiff images created in FUSION. Set the projection 
to UTM WGS84 zone 10 north. See note below about importing images into 
SPRING. 

*Note about importing images-  
SPRING is very particular about the format of the files it will import. Geo tiff files with 
associated world files are necessary. In addition, the size of the geo tiff files and origin in 
the world file must match EXACTLY. Depending on the outputs that are generated from 
the FUSION analysis, there may need to be some adjustment to the size or origin 
information listed in the world file. There are several programs that manipulate the size 
of images, so this process will not be covered in this manual. To edit world files, simply 
open the .tfw files associated with the geo tiff files and edit them accordingly in notepad. 
It is also important that the geo tiff images have the projection defined before bringing 
them into SPRINg. This can easily be done through ArcMap in the data management -> 
projections ->define projection tool in the toolbox.  
SPRING as released in the version for this manual will only accept geo tiff images. The 
functionalities shown in the File menu on the main SPRING menu do not work. There is 
no documentation as to why this occurs.* 

 
2.5 Create Segmentation- Follow these instructions as is. The values for similarity 

and area will vary depending on the purpose of the classification. Try several 
combinations to see the difference. For this dataset a similarity of 5 and area of 10 
produce decent results. 

2.6 Create Classes for Classification, Training Samples Collection- Again this 
section can be followed as is. Create class names that reflect the type of 
classification that is desired. The training sites will be dependant on the classes 
that are chosen. The aerial photograph of the study site (demo_4800K_UTM.jpg) 
may be helpful to determine classes and location of training sites.  

2.7 Run Training Sample Analysis, Classification and Output Map- Follow 
instructions as is. If classification is not satisfactory, return to the previous section 
and edit the training or segmentation and re-run the classification.  

2.8 Create Vector- Follow instructions as is. Save the shapefile to a directory 
relevant to the tutorial. 

2.9  Export Thematic Map- The view the output shapefile, open ArcMap and add in 
the shapefile to a project with the demo_4800K_UTM.jpg image already loaded.  

*Note about shapefiles- SPRING has a defect that adds 10,000,000 units to the Y 
coordinates of the output shapefile. This can be corrected by using the “Move” tool in the 
editor of ArcMap. Subtract 10,000,000 units from the Y axis and the shapefile for the 
classification should line up. * 

2.10 Add Projection, Reproject, Load into GIS- Projection will need to be defined 
for the shapefile in ArcMap in the data management -> projections ->define 
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projection tool in the toolbox. The projection should be set to UTM NAD 
1983 NADV 88 zone 10 north. 

Part IV: Accuracy Assessment of Classified Images 
 
This is the final section of the tutorial and briefly describes how to perform an accuracy 
assessment on classified images using a confusion matrix. For a full description of the 
theory and methods please see: 
Congalton, R.G and K. Green (1999). Assessing the Accuracy of Remotely Sensed Data: 

Principles and Practices. Boca Raton, FL, Lewis Publishers. 
 
Software needed: 

• Hawth’s Tools (see downloads section) 
• ArcMap 9.2 

 
Data Required: 

• Output of SPRING classification (shapefile) 
• Aerial Photograph (demo_4800K_UTM.jpg and demo_4800K_UTM.jpgw) 
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 Section I: Setting up a sampling grid and points 
As mentioned in the introduction to this part, only the set up for the accuracy assessment 
will be covered. This is primarily because this is only one method of accuracy assessment 
for classifications and is also described in detail in Congalton and Green’s book. 
 
Create a Grid: In order to see the individual pixels, a grid must be created to distinguish 
pixels.  

1. Open ArcMap with and navigate to the project used for the tutorial. 
2. Open the extensions menu and turn on the toolbar for Hawths Tools 
3. Open Hawths tools and navigate to Sampling tools-> Create Vector Grid 

 

 
4. In the dialogue box that pops up, set the extent to the “Same as Layer” and 

choose the demo_4800K_UTM.jpg from the drop down menu. Under the 
“Parameters” section, set the spacing between lines to 8.9916, and 
uncheck the two boxes. Under “Output”, choose the destination and name 
of the output grid. In this example it is called 89916_grid.shp. Click the 
button next to the “Projection Definition” to set the projection (see next 
step). 
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Click here to 
define the 
projection. 

5. When the dialogue box below appears, choose “Import” and navigate to 
the folder where the demo_4800K_UTM.jpg file is on your computer. 
Select this file and click “add” the menu on the right will appear showing 
that the projection has been set to NAD_1983_UTM_Zone_10N. Click 
“Next” and then “Finish” on the next screen. 

 

                                   
 

Second 
dialogue box 

First 
dialogue box 

6. Once the projection is set, click “ok” from the Create Vector Grid menu to 
run the program. When the processing is finished, the layer will be added 
to the project. 
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7. To view the grid, double click on the grid layer and set the fill to 
“hollow”, the line color to red and the outline width to 1.  

8. To create the point layer that will be used to as the sampling grid for the 
accuracy assessment, open the Hawth’s tools extension and navigate to 
Sampling tools -> Create a regular grid to open the tool. 

9. In the “Input” section choose the Extent to be Same as the 89916_grid.shp 
layer from the drop down menu. In the “Points” section enter 50 for the 
point spacing. Choose the alignment of rows as follows and name the 
output file 50m_points.shp and click “ok”. When processing is finished, 
the layer will be added to the project. 
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Section II – Accuracy Assessment 
 
Now that the analysis grid and sample point layers have been created, the accuracy 
assessment can be performed on the classification. This process is dependant on the 
preferences of the analyst and data that is available. In the case of this tutorial, sample 
point spacing was chosen to give approximately 100 samples per class with extra points 
included to account for pixels that have multiple classes.  
 
The basic concept of this accuracy assessment method is to compare the classification of 
the pixels that contain a sample point to the aerial photograph to determine if the 
classification is correct. The accuracy of this method is highly dependant on the analyst’s 
ability to determine classes from aerial photographs. Each of the sample point pixels will 
then build the error matrix that will be the basis for calculating the user’s accuracy, 
producer’s accuracy, overall accuracy and KHAT (Congalton and Green, 1999). 
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Appendix 2: Command lines for processing 
 
Clip data: clip raw data to ground model 
clipdata /shape:0 all_utm.lda br_99_clip_data_utm 486240 5188650 489360 5190330 
 
Canopy height model:  
1999- 
CanopyModel /ground:lidar99_grd_surfer7_may9_UTM.dtm 
br_99_canopyheight_1.5_UTM.dtm 1.5 m m 1 10 2 2 br_99_clip_data_utm.lda 
2003- 
CanopyModel /ground:lidar99_grd_surfer7_may9_UTM.dtm 
br_03_canopyheight_1.5_UTM.dtm 1.5 m m 1 10 2 2 br_clip_data_utm.lda 
 
Cover: 
1999-  
cover lidar99_grd_surfer7_may9_UTM.dtm br_99_cover_89916m.dtm 2 8.9916 m m 1 
10 2 2 br_99_clip_data_utm.lda 
2003- 
cover lidar99_grd_surfer7_may9_UTM.dtm br_03_cover_89916m.dtm 2 8.9916 m m 1 
10 2 2 br_03_clip_data_utm.lda 
 
Canopy maxima:  
1999- 
canopymaxima /wse:4.996,.05988,.001302,.000004327 
br_99_canopyheight_1.5_UTM.dtm br_99_canopymaxima_tests_bob_UTM.csv  
2003- 
canopymaxima /mult:0.5 /threshold:4.5 br_03_canopyheight_1.5_UTM.dtm 
br_03_canopymaxima_4.5_UTM.csv  
 
These were trials used to determine the best combination of parameters: 
Canopymaxima /mult:0.5 br_99_canopyheight_1.5_UTM.dtm 
br_99_canopymaxima_tests_pt5_UTM.csv  
canopymaxima /threshold:2.0 br_99_canopyheight_1.5_UTM.dtm 
br_99_canopymaxima_tests_thres20UTM.csv  
canopymaxima /mult:0.5 /threshold:3.04 br_99_canopyheight_1.5_UTM.dtm 
br_99_canopymaxima_tests_combo_UTM.csv  
 
DTM to Tiff: 
This tool needs to be run for all of the final outputs to create a raster file for processing. 
 


