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The effects of digital elevation model (DEM) grid size for stream network predictions in 

the northwestern United States were examined to test the accuracy of high-resolution 

LiDAR (Light Detection And Ranging) digital elevation data.  LiDAR elevation data 

were gridded at 2-, 6-, and 10-m scales and flow paths were predicted by four common 

routing algorithms known as D8, D-Infinity, Multiple Flow, and DEMON,  D8 being the 

least sophisticated.  These routing algorithms were also applied to a 10-m USGS DEM to 

compare LiDAR with the previously used data for hydrologic modeling.  The analyses 

indicated that as topographic detail increased, all LiDAR-derived models delineated more 

streams and located streams in their topographically correct position when compared to a 

10-m USGS DEM.  Stream maps generated by either D8 or DEMON converged as the 

DEM resolution was increased.  The data suggests that increased DEM resolution 

decreases the need for sophisticated models, reducing processing times required to create 

accurate stream locations and attributes. 

 

LiDAR digital elevation data also improved the modeling of perennial stream heads and 

fish habitat potential in a direct comparison to a 10-m USGS DEM.  Distances between 

stream heads predicted using a LiDAR dataset and field verified stream heads were 

significantly less than those predicted using a USGS dataset.  This illustrates the potential 

use of LiDAR to accurately predict perennial flow in a given landscape.  The ability to 



locate fish barriers based on landscape gradient also improved with LiDAR data.  A 

USGS dataset used to find fish barriers occasionally found barriers in places where none 

existed or vice versa.  As LiDAR datasets become more available, automated creation of 

stream networks and their hydrologic features will become more feasible and the 

accuracy of the results will be much improved. 
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1. INTRODUCTION 

 

1.1 Overview 

Streams are one of the most valuable public resources in the State of Washington.  They 

provide the habitat for fish, an important cultural as well ecological asset.  Fish bearing 

streams and the related habitat also are typically found within forests, important for 

various aspects, such as stream quality and economic values.  Ironically, there is a lack of 

accurate data in order to properly delineate streams.  Long-term sustainable harvest 

volume calculations, feasible harvest settings and road location design at the landscape or 

watershed level are critically dependent on reliable stream data.  In a small project near 

Forks (Schiess and Tryall, 2002), stream buffer areas based on official DNR data (Hydro 

layer) underestimated actual stream area by an average factor of two. 

 

However, new mapping technology provides the potential of developing improved stream 

data from more detailed surface topology.  LiDAR (Light Detection And Ranging) data 

which creates sub meter topography maps (Appendix A) is one technology that promises 

to provide increased resolution in digital surface detail compared with the typical 10 

meter topographic maps and could lead to more precise and accurate maps of stream 

networks.  Preliminary analyses showed that using LiDAR data located more actual 

stream channels and placed streams in their topographically correct position (Schiess and 

Tryall, 2002).  This ability to generate accurate stream locations and physical attributes 

using LiDAR will allow long-term sustainable harvest volume calculations to be more 

reliable. 

 

In order to properly map the physical extent of channels in a watershed, the difference 

between processes on hillslopes and in channels must be determined (Tarboton 2003).  

This difference becomes apparent when calculating how water collects on a landscape in 

a given dataset with flow direction of the water known. 
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In channels flow is concentrated.  The drainage area, A, (in m2) contributing to each 

point in a channel may be quantified.  On hillslopes flow is dispersed.  The "area" 

draining to a point is zero because the width of a flow path to a point disappears.  On 

hillslopes flow and drainage area need to be characterized per unit width (m3/s/m = 

m2/s for flow).  The specific catchment area, a, is defined as the upslope drainage 

area per unit contour width, b, (a = A/b) (Moore 1991) and has units of length (m2/m 

= m). (Tarboton 2003 p.1-2)  Figure 1 illustrates these concepts. 

   

 
Figure 1. Definitions of concentrated and dispersed contributing area and specific 

catchment area (Tarboton 2003). 
 

LiDAR can place these physical attributes in their topographically correct position.  

However, locating point ‘P’ (Figure 1), the perennial initiation point (PIP), becomes a 

challenge due to it being dependent on the catchment area which fluctuates based on 

geology, climate, precipitation, and other attributes.  

 

1.2 Previous Studies and Background Review 

Various hydrological models such as Simulator for Water Resources in Rural Basins 

(SWRRB), Environmental Policy Integrated Climate (EPIC), Groundwater Loading 

Effects of Agricultural Management Systems (GLEAMS), TR20, HEC-1, and HEC-2 



 

  

3
have been used in modeling stream networks (Luijten 2000).  The abundance of models 

demonstrates the importance given to modeling hydrologic features.  During their 

development time, typical grid models used 5 – 90 meter DEM’s.  This leads to 

hydrologic maps not containing the full stream network, and at times, streams that are 

topographically incorrect.   

 

Figure 2 demonstrates topographic error in the Washington DNR stream layer, in yellow, 

not extending completely up the channel.  Overlaid is a 2m LiDAR-derived hillshade 

model that depicts the presumably correct stream courses.  The DNR stream is also 

shifted by 300 feet to the east of the channel (Schiess and Tryall, 2002).  Such 

discrepancies are not uncommon.  This example illustrates possible inaccuracies when 

stream locations are determined using 7.5-minute topomaps, orthophotos, and some field 

verification.  This was demonstrated in other projects as well and usually is recognized 

by field staff and planning staff as a critical issue in developing reliable forest operations 

designs.  
 

 
Figure 2.  DNR stream data (yellow lines) overlying a 2m LiDAR-derived hillshade 
model that depicts the presumably correct stream courses.  Note the discrepancies 
between LiDAR-derived hydrographic features and 7.5-minute-derived hydro data 

residing in the official data layer (Schiess and Tryall, 2002). 

0 300 600150
Meters
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Figure 3 shows the contours generated from a standard 10-m DEM overlaid on a 2m 

LiDAR-derived hillshade model with slope classes from the LiDAR derived DEM.  

Downhill is toward the upper right.  LiDAR topography provided a realistic and detailed 

topography.   Photogrammetricly produced contour lines captured the general shape of 

the landscape; however, complex features such as incised streams, draws, abandoned 

road beds and sharp ridges were not recognized (Schiess and Krogstad, 2003).  The 

contour lines also do not follow the stream channel accurately. 

 

 
Figure 3.  A Lidar-hillshade derived from 2m grids versus the contours, derived from 
DNR’s 1:4800 photogrammetically derived maps with roads.  Downhill is toward the 

upper right.  LiDAR topography provided a realistic and detailed topography.   
Photogrammetricly produced contour lines captured the general shape of the landscape.  
However, those contour lines miss the topographically and regulatory important stream 
depression as indicated by the LiDAR hillshade model (Schiess and Krogstad, 2003). 

 

The advantage of LiDAR digital data over conventional photogrammetry is improved 

mapping in obscured areas.  A LiDAR bare ground surface model containing only 

elevations can be obtained after filtering out the trees and buildings in the dataset. The 

digital data then can be used in a variety of ways including: digital terrain model for use 
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in generating contours, 3D terrain views, fault locations, steep slopes, critical areas, and 

stream and drainage basin delineation (North Carolina 2003). 

 

One attempt to use LiDAR data to generate stream channels at the College of Forest 

Resources, University of Washington was on the South Tyee Planning Study in 2002 

(Schiess and Tryall, 2002).  The stream layer was produced by the “flowaccumulation” 

command in GRID and a uniform buffer was added (Figure 4).  The stream layer could 

be adjusted by changing the contributing cells to the stream, which made it possible to 

duplicate conditions observed in the field.  The contributing cell size was adjusted to a 

slightly higher level in order to include areas that may not have contained water at the 

time.  It should be noted that while the GIS method of “flowaccumulation” puts streams 

in their expected channels, it can both over- and underestimate the stream lengths 

(Schiess and Tryall, 2002).  This is because a uniform catchment size is defined on all 

stream basins when catchment size could vary from basin to basin which causes 

inaccuracy. 
 

  
Figure 4. Stream layer produced from flow accumulation model in ArcGIS with 75-ft 
buffer using LiDAR at left compared to DNR hydro layer with buffered widths scaled 

based on stream type (Schiess and Tryall, 2002). 
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There were many discrepancies in comparing the LiDAR “flowaccumulation” streams 

with a DNR-Hydro layer, which is based partly on a 7.5 minute topographic generated 

streams in the South Tyee Planning Study (Schiess and Tryall, 2002).  The 7.5 minute 

streams were buffered with widths based on stream type and the LiDAR streams were 

buffered at an average of 23m.  Table 1 shows that there is a 182-ha difference between 

the two buffer representations.  No thorough field verification was conducted, however. 

 

Table 1.  Area Covered by Buffers in South Tyee (Schiess and Tryall, 2002). 
Stream Type Buffer Area (ha) % of Study Area
7.5 Minute Streams 142 21
LIDAR Streams 324 47  

 

With better field reconnaissance and appropriate buffer widths a more accurate stream 

layer could be produced.  However, the LiDAR stream data provided a better input for 

the preliminary planning process than the 7.5 minute stream data (Schiess and Tryall, 

2002). 

 

1.3 Current Stream Data 

The current stream data was created by the DNR and is accessible through their online 

database.  The stream data represents an integrated network coverage (polygons and 

lines) that contains data on water bodies (open waters, lakes, etc.) and watercourses 

(rivers, streams, canals, etc.) (Hydro metadata).  The data was produced using 

orthographic photos from 1974, topographic maps, and field observations.  On March 1, 

2005 a new Water Type Attribution was completed.  The primary purpose of the DNR 

hydro layer was to aid in the application of timber harvest and other forest practices 

regulations and activities by the Washington Department of Natural Resources (DNR).  

Other uses include cartography and analysis where hydrographic data is required. 

 

The Water Type process occurred during a time of significant and rapid improvement 

in technical information and software tools.  As a result of the extensive fish surveys 

being performed, abundant field survey information was available for many areas of 

the state.  Advances in GIS technology provided opportunities to evaluate resource 
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protection and economic performance of alternative water typing systems across 

large geographic areas.  Digital Elevation Models (DEM) produced by the U. S. 

Geologic Survey became widely available, allowing for consistent and reliable 

characterization of the physical landscape.  For the first time since the 

implementation of forest practice regulations governing fish-bearing water bodies in 

the 1970s, the tools and data were available to develop and assess a data-driven 

classification system for use across the entire state. (Conrad et al., 2003 p.4) 

 

The physical attributes for the Water Typing model were based on a USGS 10-DEM.  

Using this DEM, physical barriers such as waterfalls and downstream gradient could be 

overlooked due to the low resolution.  Furthermore stream channels predicted using aerial 

photos under and over estimate stream locations due to visibility.  At times, the channels 

were topographically off from the actual location of those channels (Schiess and Tryall, 

2002). 

 

The current DNR hydro layer has two coding systems, type code and fish/non-fish code.  

Type code is describes as: 

• type 1, 2, and 3 --------- Fish bearing waters 

• type 4 and 5------------- Non-fish bearing waters 

• type 9-------------------- Untyped, unknown 

Types 1-4 are considered perennial and type 5 and 9 are seasonal.  The second code 

either describes streams as fish-bearing or non-fish bearing waters.  This code was 

derived from the Cooperative Monitoring, Evaluation, and Research group (CMER) 

using the CMER Model as described in the Method / Model Development section.  The 

same channel network is used for both code systems. 

 

1.4 Research Objectives 

The goal of this project is to determine if LiDAR would improve stream network 

classification.  Therefore the following questions needed to be answered: 

• Does an increase in resolution improve stream channel determination? 
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• Can stream types be determined more accurately using LiDAR datasets? 

• Can a new algorithm be developed for identifying perennial streams? 

 

To verify that the increased LiDAR resolution improves stream modeling, different 

hydrologic models were tested using a 10 meter USGS and several LiDAR DEMs at 

various resolutions.  D8, D-Infinity, Multiple Flow, and DEMON were the model 

algorithms used (refer to section 2.5 Flow Direction Methods Utilized).  Once the models 

were used and data was generated from the model, field verification was carried out to 

verify the accuracy of the predicted stream channels.
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                                     2. METHODS / MODEL DEVELOPMENT 

 

Flow direction algorithms for locating stream channels were used on various resolutions 

and correlated with field data.  This was completed to establish which flow direction 

technique worked best with LiDAR data.  For stream typing, the Cooperative Monitoring, 

Evaluation, and Research group (CMER) from the Washington State Department of 

Natural Resources (DNR) has established a model which predicts which streams are 

inhabited by fish and which do not contain fish.  This model was compared to a gradient 

model approach which used a LiDAR DEM. 

 

Three models needed to be developed in order to decide if resolution has an effect on 

stream channel determinations and if stream types could be determined more accurately 

by LiDAR.  The first model is the generation of the stream network from LiDAR DEM.  

The second is a water-typing model to determine the end of fish point (EOFP) from the 

generated stream network and the third is the perennial initiation point (PIP) model.   

 

2.1 Site Description 

The North fork of the Mineral Creek Watershed in the Mt. Tahoma State Forest is an area 

of approximately 3600-ha of forested terrain on steep topography with slopes up to 80% 

(Figure 5).  It is located near Ashford WA, contained within T14N, R6E and T13N, R6E.  

This site was chosen because the Forest Engineering (FE) capstone project was located 

there and could provide logistical support as well as utilizing initial findings in the 

development of a forest transportation strategy which was critically dependent on a 

reliable stream location depiction.  Digital datasets of the existing hydrology, cross 

drains, roads, fish barriers, soils, and high resolution digital elevation models based on 

LiDAR were obtained from WA DNR.  The LiDAR dataset was flown in February 2003 

and processed by the University of Washington with help from Hans-Erik Andersen and 

Matt Walsh (Appendix A).  The DEM’s that were processed from the LiDAR at 2-m grid 

cell size were used for forest transportation designs as part of the FE Capstone projects in 

2003 and 2005 (Schiess and Tryall, 2003; Schiess and Mouton, 2005). 
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Figure 5.  The North fork of the Mineral Creek Watershed in the Mt. Tahoma State Forest 

within the orange boundary is an area of approximately 3600-ha. (60-m contour lines) 
 

The mean annual rainfall in this area ranges from 2007 to 2210 mm (Daly et al. 2000) 

with an altitude range of 500 to 1600 m.  Forest cover is dominated by Douglas Fir 

(Pseudotsuga menziesii) with Western Larch (Larix occidentalis), Red Alder (Alnus 

rubra), Big Leaf Maple (Acer macrophyllum), Western Hemlock (Tsuga heterophylla), 

White Fir (Abies concolor), and Black Cottonwood (Populus trichocarpa) throughout.  

The majority of the region’s soils belong to the Bellicum, Cattcreek, and Cotteral soil 

series (Soil Survey Staff, 1998).  The upper part of the profile has a cindery texture from 

the pumice and volcanic ash aerially deposited from Mt. St. Helens.  The lower part of 

the profile formed in colluvium, alluvium or glacial till from andesite with a mixture of 

pumice and volcanic ash.  In general, these soils have low fertility and water-holding 

capacity and often occur on unstable slopes.  The geology is categorized by Oligocene-

Eocene (OEvba) and Oligocene (Ovc(oh)) defined as basaltic andesite flows and 

volcaniclastic deposits or rocks. 
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2.2 Stream Model 

The type of streams that were modeled included all segments of natural waters within the 

bankfull widths of defined channels which are either perennial streams (waters that do 

not go dry any time of a year of normal rainfall) or were physically connected by an 

above-ground channel system to downstream waters.  In extracting networks from 

DEM’s, Tarboton et al. (1991) suggest that the network extraction should have properties 

traditionally ascribed to channel networks and have as high resolution as possible.  A 

LiDAR-generated DEM provides this high resolution and the physical properties, such as 

channel depth and slope, associated with a stream network.   

 

2.3 Water-Typing Models  

Two preexisting logistic regression models were used to identify potential fish habitat.  

The CMER Model takes into account several physical attributes while the Gradient 

Model focuses on the gradient of the landscape.  LiDAR DEM data was used to generate 

the attributes needed to apply these models. 

 

2.3.1 CMER Model The CMER Model was used to identify potential fish habitat.  Based 

on previous research, this habitat-based, water-typing model was developed using logistic 

regression analysis and GIS data which incorporated the results of field surveys (Conrad 

et al., 2003). 

 

The fish absent | fish present (FAFP) data used to estimate the logistic regression models 

were generated from 4,052 end-of-fish points (EOFP) placed on a Washington Dept. of 

Natural Resources (DNR) GIS hydrologic layer.  Each EOFP was based on a field survey 

which followed specific protocols to identify a location on the stream that was designated 

as either last fish or last fish habitat.  Potential EOFP were submitted to DNR for error 

checking and initial screening (Conrad et al., 2003).  After approval by DNR, the EOFP 

was transferred from the DNR hydrologic layer to a 10m DEM-generated stream point 

network.  An automated procedure was then used to classify points upstream of the EOFP 
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as fish absent points and points downstream of the EOFP as fish present points.  There 

were four physical attributes associated with each point on the DEM network: 

1. Basin size (number of acres in surrounding basin that drain through a point), 

2. Elevation in feet (based on 10-m DEM network), 

3. Downstream gradient which is the average gradient measured over 100-m 

downstream of the point (calculated from 10-m DEM network elevation 

information), and 

4. Precipitation in inches (GIS derived estimate of average annual precipitation at the 

point based on Daly et al. [1998]). 

These four physical attributes associated with each EOFP point were the variables 

available for the logistic regression model building process.   

 

Equation 1 is the response function where π  is the estimated probability of fish presence. 

(1)  ( )
( )) (

 )(

1 χβ

χβ

π ′

′

+
=

e
e   

 

Equation 2 is the linear model where the variables are described in Table 2 (Conrad et al., 

2003). 

(2)  χβ ′ = -7.717073 + (0.020166 * (PRECIP)) + (3.793994 * (Log10(BASIZE))) –  
(0.062949 * (DNGRD)) - (0.110926 * (ELEV / 100)) 

 

The CMER Water-Typing Model was applied to the LiDAR DEM in the same manner it 

was applied to the 10m DEM.  Downstream gradient (DNGRD), Elevation (ELEV), and 

Basin Size (BASIZE) were determined by LiDAR using the LiDAR-derived stream 

network and elevation model.  Table 2 provides the results of the logistic regression 

model (Conrad et al., 2003). 
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Table 2.  Summary of the final logistic regression model coefficients, standard errors, 

significance of the coefficients, and 95% confidence intervals for the exponential 
of the coefficients. (Conrad et al., 2003) 

 
 

2.3.2 Gradient Model This model’s objective was to identify the physical constraints and 

stream characteristics at the upstream limits of trout distribution (Latterell et al., 2003).  

Logistic regression was used to model the likelihood of trout presence in a 100-m stream 

reach as a function of physical stream attributes using sites described in Latterell et al. 

(2003) sites.  The regression provided a probabilistic prediction of trout presence because 

the dependent variable was binomial (trout presence or absence).  Further, this technique 

does not assume normality, equal variances, or a linear response.  Equation (1) from 

above is the response function used for this model with χβ ′  as the linear model, which is 

 

(3)   0)1*( BBDNGRD +=′χβ  

 

where B1 is the Gradient Coefficient at -0.209 and B0 is the Model Constant at 2.765.  

Logistic regression calculates the probability of success identified as (i.e., trout presence, 

π ≥  0.50) over the probability of failure (i.e., trout absence, π < 0.50). 

 

2.4 PIP Model 

The perennial initiation point (PIP) is the point where perennial flow begins on a Type 4 

Water.  Type 4 Water means all segments of natural waters within the bankfull width of 

defined channels that are perennial non-fish habitat streams.  The model for PIP was 

developed in a GIS framework, whereby the measuring and recording of geomorphic 

stream characteristics were done by GIS at grid-center points along a LiDAR digital 

elevation model (DEM) generated stream network. 
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Perennial initiation point standard is defined in WAC 222-16-030(3) and 222-16-

031(4) of the Washington State Register.  For western Washington sites not in any 

coastal zone, Type 4 waters begin at a point along the channel where the contributing 

basin area is at least 21-ha. 

 

The PIP Model was based on the techniques described in Conrad et al., (2003) except the 

logistic regression was used to identifying where perennial flow begins and where it ends 

instead of fish present.  Stream head data locations were collected in the field for 5 sub-

basins within a selected site.  Points were generated 15 meters upstream and downstream 

of the stream head in GIS (Figure 6) for clear perennial definition and the following 

physical attributes were associated with the points to determine which influenced 

perennial flow: 

1. Basin size – Using SAGA (System for Automated Geoscientific Analyses, a GIS 

system) (Appendix F) the algorithms described in the Stream Model section were 

utilized. 

2. Downstream gradient - Using the 2-m LiDAR DEM, focalmin was used in ArcMap 

GIS 9.0 Raster Calculator using 100 meter mean.  The 2-m DEM was then 

subtracted by the focalmin output and divided by 100 meters. 

DG = float([2m DEM] – focalmin([2m DEM], circle, 50) / 328 * 100% 

50 is 100 meters in mapping units for 2m grid cell size and 328 is 100 meters in ft. 

3. Forest Density - A spatial tree list was created using LiDAR by Hans-Erik Andersen.  

The table in the list was comprised of height and diameter of the tree.  Crown radius 

was then calculated for each tree using: 

CR =  (H + .223) / 4.4  

where CR is crown radius and H is height (Oladi 2001).  A crown cover layer was 

created by buffering each point using the size of the crown radius and converting 

the resulting polygon coverage to a grid.  Individual tree crown density was 

determined by taking an 11-m buffer around the tree point and dividing the area of 

the crown within the buffer by the area of the buffer. 
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4. Slope (calculated from 2m LiDAR DEM network elevation information in percent 

with ArcMap (%slope = 100 * Tan (∆y/∆x))), 

5. Elevation in feet (LiDAR bare earth DEM), 

6. Precipitation in inches (GIS derived annual precipitation at the point based on Daly 

et al. [2000]), and 

7. Site Class (Downloaded from Washington DNR website) 

  

Legend
0 - Non Perennial

1 - Perennial

!. Stream Head  
Figure 6.  Plan view at a stream channel showing points generated 15 meters upstream 
and downstream of the stream head with physical attributes associated with the head.  
This is to produce a binomial linear regression model identifying perennial and non-

perennial parts of a stream network. 
 

The points upstream represented non-perennial flow as the points downstream 

represented perennial flow.  Using binary logistic regression and setting 0 for non-

perennial and 1 for perennial, the physical attributes associated with each point were used 

to develop Equation 1 from above and equation 4. 

(4)  χβ ′ = b0+b1xi1+b2xi2+...+bpxip 

 

where  

χβ ′  is the estimated linear equation 

xij is the jth predictor for the ith case of the physical attributes 

bj is the jth coefficient for the physical attributes 

p is the number of predictors.   

Downstream
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After the model equation was applied and the values less than 0.5 (non-perennial, π < 

0.50) were removed in Arc, regiongroup in ArcTools was applied to find the continuous 

parts of the network.  The grid was then converted to an .asc file and imported into 

SAGA (Appendix F).  Channel Network in SAGA was applied and the vector linear 

stream network was created. 

 

After applying the model equation in Arc, probability of non-perennial was adjusted from 

0.5 to around 0.97 for a conservative approach.  This was determined by looking at the 

histogram in the classification class and moving the class line to the highest possible 

number without removing the stream network.  Regiongroup in ArcTools was then 

applied to find the continuous parts of the network. 

 

2.5 Flow Direction Methods Utilized 

Four flow direction methods were utilized for this project.  This includes the D8, D∞, 

Multiple Flow Direction (MFD), and DEMON algorithms.  The D∞, MFD, and DEMON 

algorithms were utilized because the D8 algorithm has two major restrictions:  

(1) flow which originates over a two-dimensional pixel is treated as a point source 

(non-dimensional) and is projected downslope by a line (one dimensional) (Moore 

and Grayson, 1991), and (2) the flow direction in each pixel is restricted to eight 

possibilities. (Costa-Cabral and Burges, 1994 p.1) 

 

Spatial processing has a limited number of raster-based procedures.  Collectively, these 

raster-based procedures implemented in ARC/INFO utilize the single flow direction 

(SFD) algorithm (O’Callaghan and Mark 1984).  It calculates flow direction as the 

steepest slope direction, which is determined by the Maximum Downward Gradient 

(MDG) (Figure 5). This SFD algorithm, also known as the Direction 8 or D-8, is widely 

used on DEM data analysis and GIS software (e.g., the “Flowdirection” function in 

ARC/INFO GRID) (Jenson and Domingue 1988).  The D-8 raster procedures form the 

basis for describing and modeling water flow through a digital elevation data set.  Using 

the D-8 directional information associated with each cell, a network of flow from one cell 
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to the next is represented.  Using the flow direction information, the number of cells 

that flow into any cell is tracked and assigned to the cell. 

 

The D∞ algorithm, also known as Biflow Direction (BFD), was proposed by 

Tarboton (1997).  In this algorithm the 3 X 3 cell window is divided into 8 triangular 

facets.  The slope direction and magnitude of each facet are compared. The steepest 

downward direction is chosen and divided into two directions along the edges 

forming that facet (Figure 7).  The proportion of flow along each edge is inversely 

proportional to the angle between the steepest downward directions and the edge.  

Therefore at most two flow directions can be assigned to each cell.  The contour 

length is defined as the grid cell size (DEM resolution), and the slope is set to be the 

largest slope of 8 facets. (Tarboton 1997)  (Pan et al., 2004 p.11) 

 

Multiple Flow Direction (MFD) algorithm is the third method that was used for 

determining flow direction.   

Quinn et al. (1991) first suggested this algorithm to improve representation of the 

convergence or divergence of flow.  Wolock and McCabe (1995) showed how to 

implement this algorithm using ARC/INFO GRID functions.  Unlike the SFD and 

BFD algorithms, the MFD algorithm, each flow direction is weighted by the 

downward elevation gradient (i.e., from the central cell to each of its 8 neighbors) 

multiplied by a “contour length” (Figure 7).  There are two way so set the contour 

length: i.e. (HR/2) and (√(2)HR/4) (Quinn et al., 1991), or 0.6HR and 0.4HR (Wolock 

and McCabe 1995), for cardinal and diagonal flow directions, respectively, where 

HR is the horizontal resolution, …. (Pan et al., 2004 p. 2-3) 

 

In DEMON (Digital Elevation MOdel Network) by Costa-Cabral and Burges (1994), 

flow is generated at each pixel (source pixel) and is routed down a stream tube until 

the edge of the DEM or a pit is encountered.   The stream tubes are not constrained 

to coincide with the edges of cells and can expand and contract as they traverse 

divergent and convergent regions of the DEM surface.  The stream tubes are 
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constructed from the points of intersections of a line drawn in the gradient 

direction (aspect) and a grid cell edge (Figure 7).  The amount of flow, expressed as a 

fraction of the area of the source pixel, entering each pixel downstream of the source 

pixel is added to the flow accumulations value of the pixel.  After flow has been 

generated on all pixels and its impact on each of the pixels has been added, the final 

flow accumulation value is the total upslope area contributing runoff to each pixel. 

(Wilson and Gallant, 2000 p.66) 

 

 
Figure 7. Schematic of the DEM pixel aspect computation and flow angle mapping 

performed by the D8, MFD, Dinf, and DEMON algorithms.  Values on the left signify 
elevation.  Solid arrows point in the direction that flow is mapped, and dotted lines 
correspond with the degree value above the pixel and indicate the pixel aspect for 
DEMON and Dinf.  The distinctions between a block- and edge-centered DEM is 

illustrated (Endreny and Wood 2001) 
 

2.6 Stream Channel Determination by Flow Accumulation 

Once it is determined how water flows across a landscape, a flow accumulation value can 

be assigned to each cell showing how many cells are upstream from it.  This simulates 

water as it accumulates going down hill to a stream channel.  A user-determined 

accumulation cell threshold value identifies those cells that have concentrated flow and 
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those cells that do not have concentrated flow.  This threshold value defines the 

catchment size required for flow to become a stream channel. 

 

Montgomery and Dietrich (1992) found that landscape dissection into distinct valleys is 

limited by a threshold of channelization that sets a finite scale to the landscape.  This 

threshold determines the number of sub-basins that exist in the model.  A small threshold 

results in a large number of small basins whereas a large threshold results in a small 

number of large basins.  The threshold is equal to the hillslope length / accumulation that 

is just shorter than that necessary to support a channel head (Montgomery and Dietrich 

1992).  A threshold-based approach is most appropriate for modeling channel head 

locations over shorter, geomorphic time scales (e.g. 102-103 years) than modeling valley 

development (e.g. 104-106 years) (Montgomery and E. Foufoula-Georgiou 1993).   

 

2.7 Generation of Flow Direction Networks 

Many programs were used to implement the different flow direction models on a LiDAR 

DEM.  SAGA (System for Automated Geoscientific Analyses) was the main interface 

used while ArcMap, TauDEM (Terrain Analysis Using Digital Elevation Models), and 

TAS (Terrain Analysis System) were used to verify that SAGA was performing the flow 

direction models properly (Appendix F).  The reason that SAGA was used instead of 

other programs was its ability to store grid files in memory.   Memory storage allowed 

the data to be compressed saving computer memory to permit more demanding tasks 

such as computing flow direction algorithms.  The LiDAR DEM had to be broken up into 

individual sub-basins for the other programs to use the data.  Because of the 

computational demand of DEMON, the 2-m LiDAR DEM had to be divided into the 

basin specific for the study site for SAGA to utilize the dataset. 

 

2.8 Current Hydro Layer Evaluation 

Evaluation of the DNR hydro layer consisted of selecting two watersheds within the 

study site and confirming the DNR stream types correlated with what was out in the field.  
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When an error in correlation existed, the proper stream type was determined in the 

field to identify common problems within the DNR hydro layer. 

 

2.9 Field Measurements 

Field locations were sampled to test the accuracy of the current DNR hydro layer, various 

models used with the project, and evaluate the creation of a new stream model.  Table 3 

lists the features collected with Table 4 listing the associated attributes of those features. 

 

Table 3. Stream parameters identified and collected in the field.  The information was 
logged together with GPS coordinates. 

Range within Feature Type
Feature Type Width (ft) Water Depth (ft)
Stream Head 1 - 10 0.1 - 3
Stream 1 - 7 0.2 - 5
Fish Blockage 1 - 15 0.5 - 6
No Channel 0 0
Channel - No Water 0 0
Seasonal 0 - 2 0 - 1
Other 0 - 1 0 - 1  

 
Table 4.  Fish presence or absence, % gradient and fish barrier type was logged with each 

stream feature type.   

Fish Present Gradient (%) Fish Barrier
No 0 - 4 Culvert
Yes 5 - 9 Logs

10 - 15 None
16 - 50 Waterfall

Rocks
Road

Possible Values

 
 

Field planning was done by using LiDAR streams with the DNR hydro layer to locate 

stream features in the field.  The above values were then determined and logged using a 

Trimble ProXRS GPS unit.  The ranges for width and water depth for each stream feature 

were evaluated (Table 4) as well as the possible values (Table 4) that the features could 

have associated with it.  Fish presence was assessed only by visual inspection of the 

stream.  If a stream did not contain much water, contained many fish barriers, or went 

underground, it was assumed that no fish would be present.  Field work was done April 

20th through May 3rd 2005. 
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3. RESULTS 

 

3.1 Flow Direction Comparison 

The D8, Dinf, MFD, and DEMON predicted stream channel locations differently.  The 

major difference in stream channel determination was in hillslope interpretation.  

Differences between D8 and DEMON decreased as resolution increased.  From visually 

inspecting Figure 8, a 1:1 relation between D8 and DEMON at the 2-m resolution was 

shown using regression correlation, when a stream is defined as a 5-ha (13.2 (ln ft2)) 

basin.  The models do not begin to correlate until 30.4-ha (15.0 (ln ft2)) at the 10-m 

USGS resolution from Figure 9.  As resolution increased, the spread of the points in those 

figures becomes more confined to the lower left corner indicating the correlation between 

D8 and DEMON flow direction models.  Table 5 summarizes the relationship between 

D8 and DEMON algorithms at various resolutions.  No correlation can be determined 

with any combination of the other flow direction models with respect to increased 

resolution (Appendix G).  APPENDIX G provides the plots of catchment area at all 

resolutions with the flow direction models used. 
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Figure 8. Cell plot of entire catchment area for a 2-m LiDAR DEM at the study site 

(Natural Log Values).  D8 and DEMON correlate well above a threshold of 
approximately 5-ha as shown with the red mark.  Below the 5-ha mark, differences are 

shown by the scatter. 
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Figure 9. Cell plot of entire catchment area for the 10-m USGS at the study site (Natural 

Log Values).  D8 and DEMON do correlate although not until a catchment area of 
approximately 30-ha is acceded as shown with the red mark.  Below the 30-ha mark, 

differences are shown by the scatter. 
 

Table 5.  Relation between D8 and DEMON algorithms at various resolutions.  As 
resolution is decreased, the correlation between D8 and DEMON becomes less.  Basin 

size values determined by visually inspecting the plot of catchment area figures. 
DEM Resolution Basin Size (ha)
2-m LiDAR DEM 5.0
6-m LiDAR DEM 6.8
10-m LiDAR DEM 9.1
10-m USGS DEM 30.4  

 

Using LiDAR datasets, D8 determines stream networks as well as DEMON.  Endreny 

and Wood (2003) gave 2D-Lea (a building block in DEMON) the highest ranking in 
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accuracy in comparison to any stream model that was used in their study.  The data 

suggested that increased DEM resolution decreased the need for sophisticated models, 

reducing processing times required by complex models for high-resolution DEM’s.  

Since D8 is the most commonly used model and simplest to implement, computational 

time in computing stream networks is reduced in comparison to DEMON.  

 

When comparing a LiDAR derived 10-m DEM with a USGS 10-m DEM, D8 stream 

channels with a catchment size of about 12-ha and greater somewhat converge between 

the two DEM’s (Figure 10).  When catchments are less than 12-ha, no convergence 

existed.  Since a USGS 10-m DEM contained topographic errors in regard to stream 

channel location, streams from the LiDAR and USGS were categorized as identical if 

they were less than 90-m apart to decrease error between the two datasets.  This caused 

differences to decrease significantly between the two stream networks (Appeddix H).  

These differences occur in Strahler order 1,2 and 3 streams.  The area in the lower middle 

of Figure 10 corresponds with areas when that the 10-m USGS under predicted stream 

channels in comparison to the area to the left side of the figure which corresponds to 

areas of under prediction of the LiDAR 10-m.   
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Figure 10. The D8 flow algorithm applied to the USGS and LiDAR Generated 10-m 

DEM.  Illustrates that stream channels with a catchment size of about 12-ha and greater 
somewhat converge between the two DEM’s with regards to D8.  When catchments are 

less than 12-ha, differences in stream channel location are shown by the scatter. 
 

3.2 Resolution Effects on Flow Direction 

As the DEM resolution increased, D8 model sensitivity also increased.  At the 2-m 

resolution, a road crossing a stream is seen as a dam therefore routing the stream onto the 

road (Figure 11).  The road influence alters stream location and extent.  To correct this 

problem, known culvert locations, stream or ditch culverts at the study site were used to 

make the stream continue under the road.  The LiDAR DEM was lowered in elevation at 

the culvert locations to cause the stream channels to flow to the culverts and away from 

the road.  Culvert data causes the streams to flow to the main channel thereby minimizing 

road effects (Figure 12) (Schiess and Tyrall, 2003).   
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Decreasing the LiDAR-DEM resolution to 6-m removed the road effect and placed 

streams in a more realistic location than the 2-m uncorrected.  At 6-m resolution, the 

stream models could not identify roads or the ditches associated with the roads.  As the 

LiDAR-DEM resolution decreased, road influence decreased.  Stream channels, for the 

most part, followed the corrected 2-m stream network (Figure 13).  The advantage of the 

6-m LiDAR-DEM was that it provided a significantly improved stream network 

compared to the 10-m USGS DEM and removed the need for culvert data. 

 

Figure 11. Streams generated from the 2-m LiDAR-DEM, in red, without using culvert 
correction.  Stream culverts are circled, ditch culverts are triangles.  At the 2-m 

resolution, the models defined some roads as stream channels bypassing the stream 
culverts (arrows). 
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Figure 12. Streams generated from the 2-m LiDAR-DEM using culvert locations.  Stream 
culverts are circled, ditch culverts are triangles.  Culvert data causes the streams to flow 

downslope of the culvert allowing the stream to travel to the main channel more 
accurately. 

 
Figure 13. At 6-m resolution, the stream models did not route streams along roads and 

ditches.  Removing the road effect placed streams in a reasonable location. 
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3.3 Assessing the Current Hydro Layer 

Of the streams that the WA DNR identified as Type 9 (section 1.3), 72% were observed 

as not containing water.  Half of those did not even contain an identifiable stream 

channel.  The other half could be considered seasonal even though water erosion was not 

present.  The remaining 28% that contained water also contained a perennial initiation 

point. 

 

Very few of the streams typed as 5 were dry and most were perennial.  Figure 14 

illustrates field verified perennial streams identified using 6-m LiDAR DEM versus what 

the DNR considers perennial.  Not all streams were visited due to stream head 

inaccessibility.  There is a 530% increase in perennial stream length going from the DNR 

hydro layer perennial steams to the field verified perennial streams (Table 6).  If a 

uniform buffer of 30 meters, a standard DNR regulation estimate, was placed around the 

stream channels, there would be a 350% increase in buffered area. 

 

 
Figure 14. Field verified perennial streams using LiDAR in green vs. what the DNR 

considers perennial in blue. 
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Table 6. Differences in perennial stream length between DNR hydro layer and the 

LiDAR stream network derived from 6-m LiDAR DEM. 
Perennial Stream Datasets Length (km) Buffer Area (ha) *
DNR Hydro Layer created using USGS 7.5' 68 240
LIDAR Streams 362 860  

*Uniform 30-m buffer for both datasets for Perennial flow 

 

3.4 Determining Perennial Streams 

Given the soils geology and topography of the Tahoma State Forest, perennial flow began 

when ground water surfaced to form a stream head (Figure 15).  Almost 90% of the 

stream heads located in the field fit this description interpreted as a spring (Figure 16).   

 

 
Figure 15. Stream head defined by the landscape.  Perennial flow begins when ground 

water surfaced to form a stream head 
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Figure 16. Spring identified as a stream head in the field. 

 

In the field, 61 stream heads were located within the Mineral Creek, North Fork 

watershed.  Table 7 lists the distribution on the stream heads and Figure 17 displays the 

locations of the heads.  Using the method described in the PIP Model section,  

53 heads were selected at random within the study site to be used to create a model to 

predict perennial initiation points (PIP). 
 

Table 7. Sub-Basins used in perennial head identification with the number of stream 
heads visited in the field. 

Sub-Basin Sub-Basin Area (ha) Stream Heads Visited
1 318 12
2 473 13
3 366 23
4 486 4
5 526 5  
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Figure 17. Stream heads in green within the study site.  Stream channel generated from 

the 6-m LiDAR-DEM. 

 

The final Linear Regression model for PIP used fewer variables than expected.  The final 

model selected Basin Size using D8, Percent Slope, and Precipitation.  Downstream 

gradient, forest density, elevation, and site class could not be used to create the equation 

for determining the probability of stream head locations based on a 0.05 significance 

level.  Table 8 summarizes the variables uses for the regression.  The Hosmer-Lemeshow 

chi-square statistic for this model was 10.262 and the -2 Log likelihood statistic was 

80.130.  Self-classification accuracies for this model were 77.4% for perennial flow and 

88.7% for non-perennial flow.  APPENDIX I provides further statistics regarding 

regression. 
 

Table 8. Summary of the final logistic regression model. 
95.0% C.I. for Exp(B) Coefficients Estimate Standard 

Error 
Signifi- 
cance Exp(B) 

Lower Upper 
Log10(Basin Size) 7.235 1.425 0.000 1386.737 84.879 22656.314 
Precipitation 0.477 0.184 0.010 1.612 1.123 2.313 
% Slope 0.096 0.040 0.016 1.101 1.018 1.191 
Constant -45.172 16.050 0.005 0.000     
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Using a model based on basin size alone for predicting perennial stream channels 

would be less accurate than the above model.  The Hosmer-Lemeshow chi-square 

statistic for basin size model was 8.864 and the -2 Log likelihood statistic was 91.840.  

Self-classification accuracies for the basin size model were 77.4% for perennial flow and 

84.9% for non-perennial flow.  Overall, the average basin size for perennial flow for this 

model is 1.28-ha (3.16 acres). 

 

Both models can over estimate the extent of perennial stream channels by placing flow 

upstream of the PIP.  Using the conservative approach described in the PIP Model section 

it has the potential to under predict perennial flow.  Using average basin size determined 

from the field data, the average value is 2.2-ha (5.44 acres).  This average over and under 

predicts perennial flow.  Since the Washington State Register defines contributing basin 

area as at least 21-ha (52 acres), all models and approaches would significantly correct 

WAC estimations. 

 

The model in Table 8 was run at 4 different resolutions, 2-m, 6-m, 10-m LiDAR and a 

10-m USGS DEM.  Figure 18 illustrates the change in distance between modeled stream 

head location and field-verified stream head location for different DEM resolutions.  This 

indicates that at all LiDAR resolutions, the error is relatively the same.  The 10-m USGS 

DEM average distance and spread are higher than the LiDAR.  This confirms that LiDAR 

improves upon modeling stream heads more accurately than a 10-m USGS DEM.  The 

reasoning for high distances in the figure is due to the model not predicting a stream 

where the field verified stream head was located.   



 

  

33

 
Figure 18.  The distance error between modeled stream head location and field-verified 
stream head location at a given resolution.  This indicates that at all LiDAR resolutions, 
the error is relatively the same.  The 10-m USGS DEM average distance and spread are 

significantly higher than the LiDAR. 
 

The PIP Model was tested on the various flow direction techniques listed in the “Flow 

Direction Methods Utilized” section to test which flow direction algorithm worked best 

in locating perennial flow.  Because of the differences in the MFD and Dinf from D8, a 

separate bilinear regression model was created but none of the variables were significant 

based on a 0.05 significance level.  The regression model in Table 8 was then used on the 

various algorithms on a 6-m LiDAR DEM to see the errors in predicted stream head 

locations.  DEMON and D8 stream heads correlated in the difference in distance from the 

field-verified stream heads.  Dinf and MFD increased in the difference in distance from 

field stream heads when compared to D8 (Figure 19).  Finding a way to develop a 
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bilinear regression model for Dinf and MFD would reduce the data error illustrated 

below. 

 

 
Figure 19.  The distance error between field-verified stream heads and various flow 

direction modeled streams.  DEMON and D8 correlated in error while Dinf and MFD 
significantly increased in error. 

 

3.5 Determining Fish Stream Habitat 

The CMER Model and Gradient Model estimated fish extent differently.  CMER Model 

used basin area, downstream gradient, elevation, and precipitation, while the Gradient 

Model uses only downstream gradient.  With field verification, the Gradient Model 

located fish barriers providing accurate fish habitat maps.  The CMER Model tended to 

place potential fish waters well upstream of waterfalls and culvert barriers.  Overall, the 

Gradient Model predicted fish extent closer to the main channel than the CMER method.   
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Figure 20 displays a longitudinal profile of a selected creek generated by a LiDAR DEM.  

The red zones indicate field verified waterfalls and culvert/road locations that the 

Gradient Model identified.  These waterfalls can range from 1 to 6+ meters tall.  If trout 

were able to pass these barriers, the CMER Model would be correct in its estimation.  

Figure 21 shows the predicted fish habitat estimated by the Gradient Model.  The CMER 

Model and DNR Hydro layer are within the predicted fish habitat area but overlook 

small, but critical segments that act as fish barriers.  Gaps in between the green zones are 

the waterfall and culvert barriers.  These results were similar to the results for other 

stream channels throughout the study site.   
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Figure 20. Longitudinal Profile of a selected creek. (Distance from main channel)  The 
red zones indicate field verified waterfalls that the Gradient Model identified as well as 

culvert/road locations. 
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Figure 21.  Stream Channel used (red) from Figure 20.  This shows the predicted fish 

habitat in green estimated by the Gradient Model.  The CMER Model and DNR Hydro 
layer are within the predicted fish habitat area but overlook small, but critical segments 

that act as fish barriers.  Gaps in-between the green zones are the barriers. 
 

The CMER Model and the DNR Hydro layer predicted fish presents further up stream 

than the Gradient Model.  Using the Gradient Model, fish-bearing streams decrease 24% 

from the DNR Hydro layer (Table 9).  The CMER Model potentially overestimates fish-

bearing streams by 54% when compared to the Gradient Model.   

 

Table 9.  Predicted Fish-Bearing Streams within the Study Site using different 
techniques. 

Datasets for Fish-Bearing Length (km)
DNR Hydro Layer 18.0
CMER EOFP Model 22.4
Gradient Model using LiDAR Streams 14.5  

 

The LiDAR DEM modeled fish barriers more accurately than a 10-m USGS DEM 

(Figure 20).  At times, the USGS dataset resulted in incorrect locations for major 

waterfalls.  In many cases, major waterfalls were not identified at all.  For the most part, 

the USGS DEM identified the larger streams at the study site as accurately as the LiDAR 
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DEM.  This makes sense considering how the USGS DEM was created.  Large streams 

are visible from aerial photos allowing elevation readings to be fairly accurate. 

 

3.6 Weaknesses and Shortcomings 

Having a LiDAR DEM dataset provides the ability to model stream channels with their 

respective stream head location more accurately compared to using the standard 10-m 

USGS DEM.  LiDAR DEMs also allow for more accurately locating potential fish 

barriers.  Currently, less than 1/5 of Washington State has LiDAR coverage limiting the 

ability to model stream networks across large portions of the state.  The DNR as well as 

the timber industry appear to be set on rapidly expanding there LiDAR coverage which 

would eliminate this problem. 

 

Current spatial information usually does not have the fine resolution of a LiDAR dataset.  

Soils surveys, geology, and site class information are at lower resolutions than LiDAR so 

trying to develop a model that uses those themes could be difficult.  These datasets would 

need to be at a higher resolution to better match a LiDAR derived dataset.  The lack of a 

high-resolution site class map may explain why site class could not be used in the 

perennial stream regression model.   

 

The major limitation to the regression model used to predict perennial flow is that it is 

site specific.  While it proved to be more accurate than the current datasets available, 

accuracy may decrease when applying the model to a variety of landscape types.  Data 

collected on a larger, more diverse area would generate a model better able to model 

landscapes. 

 

In the middle of Figure 21 just below the “CMER Hydro End of Fish” label, a series of 

stream channels were identified in blue.  This is a misrepresentation of the landscape due 

to dense forest canopy.  A dense canopy will limit the amount of laser ground returns 

causing a loss of resolution in specific locations.  A way to correct this problem would be 

to conduct field surveys of the landscape at those locations. 
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4. CONCLUSION 

 

When used with high-resolution DEMs, the most common and least sophisticated 

algorithm to locate stream channels based on flow, D8, proved to be sufficient when 

compared to more complicated and process demanding algorithms.  The advantage of D8 

is that most programs like ArcGIS come standard with this algorithm to locate stream 

networks.  In generating stream data using LiDAR, a computer with a high-speed 

processor is not necessary.   

 

Increasing surface topographic resolution allowed an increase in the precision of stream 

channel modeling.  Since the LiDAR DEM that was used for this project was at a 2-m 

resolution, decreasing the resolution of the LiDAR did not alter the ability to model 

locations of stream channels.  The resolution at 2-m proved sensitive for the models used 

requiring a culvert dataset to alter stream flow off the road networks.  Decreasing 

resolution to 6-m eliminates road effect errors.  Relying on the resolution of a 10-m 

USGS DEM proved inadequate in modeling head water streams.  High-resolution DEMs 

are necessary to accurately model stream networks.  

 

As shown, a LiDAR DEM is a great source for generating hydrologic data by identifying 

probable perennial stream channels and locating fish barriers along a given stream.  The 

ability to accurately model headwater streams and identify fish-bearing streams allows 

stream buffer zones to be in their topographically correct location.  In turn it will allow 

for better planning at both the strategic (sustainable harvest volume calculations) and 

tactical or map scale level (forest operations planning at the watershed level) rather than 

having to rely on time-consuming field reconnaissance. 
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APPENDIX A:  LiDAR System Used 

 

LiDAR (Light Detection And Ranging) data is collected by a well defined flight plan 

through a specified location. (Appendix Figure A1)  LiDAR is a method of detecting 

distant objects and determining their position or other characteristics by analysis of 

pulsed laser light reflected from their surfaces. LiDAR works on the same principle as 

RADAR (Radio Detection And Ranging), but LiDAR uses light waves emitted by a laser 

(rather than radio waves) to gather data. In its simplest form, LiDAR is used to determine 

the distance from the laser to a given object. 

 
Appendix Figure A1.  LIDAR Data Collection (Renslow 2001) 

 

The data for the study site was collected by TerraPoint which flew a multiple-return 

scanning laser altimeter in a small fixed-wing aircraft with a circa 0.9 meter on-the-

ground laser spot, nominal across- and along-track pulse spacing of 1.5 meters, and 50% 

overlap of adjacent flight lines, providing an average of circa 1 pulse/square meter. Some 

of these data (Bainbridge Island) were acquired for Kitsap PUD in 1996-1997. Average 

pulse spacing of the Bainbridge data was similar.  



 

  

43
 

The data are in Stateplane projection, Washington Sorth zone  FIPS zone 4602.  The 

vertical datum is NAVD88, horizontal datum is NAD83 HARN. Horizontal units are US 

Survey Feet. Raster cells (grid cells, image pixels) are 6 ft square. Elevations are 

recorded in integer feet. 
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APPENDIX B:  LiDAR Data Collection 

 

This section was developed as data was processed for the University of Washington 

Forest Engineering Capstone course using data provided by Washington State 

Department of Natural Resources.  The LIDAR data that was being processed was for the 

Tahoma State Forest and was flown by TerraPoint, LLP in the spring of 2003. 

 

It was decided to use an algorithm developed by Haugerud and Harding 2001 for a 

variety of reasons.  The first was that the process is published and publicly available.  

Their connection with the University of Washington made access to assistance a little 

easier.  The algorithm was also developed using data provided by TerraPoint, LLP so it 

had been used before and some of the issues related to processing on TerraPoint data 

were documented. 

 

The data was provided in the Washington State Plane Nad83 as ASCII files.  The data 

contained up to four returns per point.  Before beginning the process of removing the 

vegetation points, Hans Anderson of Precision Forestry ran the data through a script that 

removed all of the points leaving only the last return for each point.  The process 

described below is based on using the last return only data. 

  

Process 

1.   The last return data files received from Hans were text files where the first three 

numbers were [X Y Z], space delimited.  Using java application asc2gen.exe, the data 

was converted into Arc Info Generate format (see Appendix B).  This creates new files in 

the directories with the same names as the input but with the extension of TXT_L.  

2.   Copy the file TXT2TIN.AML (see Appendix C) to the folder containing the text files 

of Generate and last return.  Run this script.  No arguments are needed.  
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3.   A folder with the [name]_l for each of the TXT_L files will appear.  These are the 

last return TINs.  Copy these folders to a new folder for Deforestation.  The folder name 

GROUND was used and the name will be used for the rest of the process.  

4.   In this new folder ground, copy AML scripts VDF.AML, DESPIKE3.AML, 

ELAPSEDTIME.AML and TIN2DEM.AML (see Appendix D).  

5.   Change the working directory in Arc to the GROUND folder and run VDF.AML.  

The script will look for all the TINs in the directory and process them all at once.  This is 

a very long process.  See the following discussion for issues and things to watch out for 

when running the VDF scripts.  

6.   The final stage of the processing is to run the script TIN2DEM.AML.  This is the 

script that handles the combining of the tins into one and then creating the grid and DEM 

files to be used in other applications.  See the following discussion for issues and things 

to watch out for when running the TIN2DEM.AML script. 

 

Discussion   

The first time that this process was run, there were a few things that came up that are 

worthy of discussion.  The first issue was time to process.  It took about 12 days to 

process 270 files in 2 GB of ASCII data.  Part of that time was used in modifying scripts 

to automate the processing of the files.  Most of this time was in handling the creation 

and re-creation of all of the TIN files.  Arc Info is very slow in processing these files.  

Due to a noticed problem in the DZ2 setting (discussed next) it was necessary to rerun the 

data.  This time the process was run using scripts created by Hans Anderson in IDL.  The 

processing time was dropped to about four days.  Unfortunately IDL can only be run on a 

computer with the interpreter so it is not possible to use this standalone.  It does leave 

some thoughts on ways to program the process into a standard language such as Java, 

C++, or Visual Basic in order to create the ground data set or at least reduce the data size 

that Arc Info needs to process. 

 

The next problem that was noticed is that in areas that appeared to be dense stands and in 

particular younger stands, the scripts were not removing enough points so the areas were 
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showing up as raised areas.  The problem was traced to the DZ2 setting in the 

VDF.AML file.  The default setting from the website was 8' which is described as four 

times the grid size used in the processing.  Since the default two-foot setting was left 

alone, it was thought this would stay the same.  This setting was placed in the program to 

get rid of false minimum points in the data and would remove any points that were more 

than eight feet below the average for that grid.  Unfortunately with very dense vegetation 

the majority of the point get caught high in the canopy and the few points that do make it 

to the ground are viewed as false lows.  To fix this error the DZ2 setting has been 

modified to 100.  This still allows for an initial check for extreme false lows while not 

removing points that are approximately tree height from the average. 

 

One problem that was noticed that may not have a direct solution is areas of large triangle 

surfaces.  These were particularly noticeable in the dense stands were a lot of the points 

never make it to the ground.  This creates visible indications but has not been determined 

to provide any negative aspects to some of the analysis procedures like hydrology and 

view sheds.  It does leave a reminder; in those areas the data is of lower quality at the 

ground level. 

 

Managing the scripts and running them at the correct time was inconvenient at times. 

With just a little work it would be possible to create a master AML that handled all of the 

moving of data to the correct locations and running the correct AML to process the data.  

Due to the amount of data for Tahoma, it was broken into four blocks to be processed. 

This meant continually monitoring the processes to see where they were. 

 

Most of the variables in the VDF aml were not changed.  The one constant in DESPIKE3 

that is worthy of a brief note is the two-foot grid setting in the Arc TINLATTICE 

command.  The setting was left at two since the expected data quality was one point per 

square meter.  The effect of increasing this value is not known but might be a way to 

speed up the processing by increasing the grid size.  This would most likely decrease the 

ground quality to some degree but is something to look into. 
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A final caution when processing files in Arc Info, Arc is limited in the file name sizes. If 

any problems occur with the scripts stopping then the first thing to check is the names of 

the files. If the names are too large it will be necessary to rename the files. A simple 

script was created in DOS to automate the renaming process for all of the files that were 

attempted to manage. 

 

File size is important when processing the entire LIDAR data using the TIN2DEM script.  

The processing limitation in Arc Info is 2.1 GB.  Since the LIDAR set for the Tahoma 

State Forest combined was about 2.8 GB, this lead to Arc Info processing 75% of the data 

set.  Arc Info would give an error message and leave the script during the creation of the 

MASTER_TIN. 

 

Arc Info usually would allow the appending of the files prior to the creation of 

MASTER_TIN but at time would give an error messages indicating that it could not 

append the desired files. 

 

The way to correct the problem was to run the TIN2DEM script for the north and south 

side of Tahoma State Forest separately.  In order to merge the sides together, it is 

necessary to process an overlap section between the north and south.  The outcome would 

be MASTER files for the north, south and middle section.  Load the MASTER_GRD for 

the middles section into ArcMap and cut the edge around the grid out in order to remove 

the areas that were interpolated with only a few points.  Use the merge function in raster 

calculator to merge the middle, north and south.  Make sure to list the middle section first 

so that the boundary of the north and south will be ignored.  Run the Hillshade process in 

ArcMap to better visualize if any error occurred in the merge.  A visual error is a line 

from the boundary of the north, south, and middle.  A minor error may not be avoidable. 
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APPENDIX C:  GEN2ASC.EXE   

 

The following bit of java code was written by to facilitate the processing of multiple 

ASCII (X, Y, Z) files into Arc Info Generate format. The program creates a small 

interface that allows window control of selecting files. In any given folder select as many 

files as desired of the correct format and the files will be formatted automatically and the 

new files will be placed in the same directory with a "txt_l" extension. 

 

/* 
 * @(#)asc2gen.java 
 * Matthew Walsh 
 * March 12, 2003 
 * 
 * Reads files in format "x, y, z" and creates an Arc Generate file 
 * 
 */ 
 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
class asc2gen extends JFrame { 
 private JPanel buttonPanel; 
 private datman data; 
 private JButton function3; 
 
 public asc2gen() { 
  super("Ascii(x,y,z) to Generate"); 
  data = new datman();  // instantiate the data controler 
 
  function3 = new JButton( "Convert Files" ); 
  function3.addActionListener( 
   new ActionListener() { 
    public void actionPerformed( ActionEvent e) 
    { 
      data.openFile(); 
    } 
   } 
  ); 
 
  buttonPanel = new JPanel(); 
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  buttonPanel.setLayout( new GridLayout(2,4) ); 
  buttonPanel.add( function3); 
 
  Container c = getContentPane(); 
  c.add( buttonPanel, BorderLayout.SOUTH ); 
 
  setSize( 580, 700); 
  show(); 
 } 
 
 public static void main(String args[]) { 
  asc2gen app = new asc2gen(); 
 
  app.addWindowListener( 
   new WindowAdapter() { 
    public void windowClosing(WindowEvent e) 
    { 
     System.exit(0); 
    } 
   } 
  ); 
 } 
} 
 
/* 
 * @author  Matthew Walsh 
 * @(#)datman.java  03/04/03 
 * 
 *  Handles the reading of X,Y,Z format ascii data and writing ArcInfo Generate files. 
 */ 
 
import java.io.*; 
import java.util.*; 
import javax.swing.*; 
 
class datman { 
 public String x, y, z; 
 public int numCommands=0, curCommand=0; 
 private BufferedReader input; 
 private BufferedWriter output; 
 private JFileChooser fd; 
 
 public datman() { 
 
  fd = new JFileChooser(); 
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  fd.setFileSelectionMode( JFileChooser.FILES_ONLY ); 
  fd.setMultiSelectionEnabled(true); 
 } 
 
        /** 
         * Calls JFileChooser and handles which methods to call in order to 
         * read the files. 
         */ 
 public void openFile(  ) 
 { 
  String stRead = ""; // Line strings for running StringTokenizer 
  String stCurToken = ""; // string containing current token for parsing. 
  String theCommand = ""; 
 
  int result = fd.showOpenDialog( null ); 
 
  // check for cancel button 
  if ( result == JFileChooser.CANCEL_OPTION ){ 
   return; 
  } 
 
  File filelist[] = fd.getSelectedFiles(); 
 
 for (int k = 0; k < filelist.length; k++) { 
  File fileName = (File) filelist[k]; 
 
  if (fileName == null || fileName.getName().equals("")){ 
   JOptionPane.showMessageDialog( null, "Invalid File Name", 
"Invalid File   
name", JOptionPane.ERROR_MESSAGE ); 
  } 
  else { 
   // open the file 
   try { 
    if (numCommands != 0) 
     this.closeFile(); 
 
    input = new BufferedReader(new FileReader (fileName),   
10240); 
//    JOptionPane.showMessageDialog( null, 
fileName.getName(),   
"File Name", JOptionPane.INFORMATION_MESSAGE ); 
 
    output = new BufferedWriter(new   
FileWriter(fileName.getName()+ "_l"), 10485760); 
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    for (int i = 0; i < fileName.length(); i++) { 
 
     stRead = input.readLine(); 
     StringTokenizer st = new StringTokenizer(stRead,   
" "); 
     x = st.nextToken(); 
     y = st.nextToken(); 
     z = st.nextToken(); 
//     System.out.println("x: " + x + " y:  " + y + " z:  " +   
z); 
     output.write("1 " + x + " " + y + " " + z); 
     output.newLine(); 
//     output.flush(); 
    } 
 
    output.write("END"); 
    output.flush(); 
    output.close(); 
 
   } 
   catch (IOException e ) { 
    JOptionPane.showMessageDialog( null, "Error Opening 
File",   
"Error", JOptionPane.ERROR_MESSAGE ); 
 
   } 
   catch (NullPointerException e) { 
    // placed here just to catch the times when the program   
attempts to read too far. 
    System.out.println("Null Point error in data reading"); 
    try { 
 
     output.write("END"); 
     output.flush(); 
     output.close(); 
    } catch (IOException f) { 
     System.out.println("Null Point error on the second   
try/catch"); 
    } 
   } 
 } 
  } 
 
 } 
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        /** 
         * Closes the data files and removes the data from memory. 
         */ 
 public void closeFile(  ) 
 { 
  try { 
   input.close(); 
 
   this.numCommands = 0; 
   this.curCommand = 0; 
 
  } 
  catch (IOException ex){ 
   JOptionPane.showMessageDialog(null, "Error closing file", 
"Error",   
JOptionPane.ERROR_MESSAGE ); 
   System.exit(1); 
  } 
 } 
} 
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APPENDIX D:  TXT2TIN.AML   

 

This is the file that creates the first TIN, triangulated surface from the point data, which 

will be used in the rest of the Virtual deforestation process. Run this aml through Arc in 

the directory that has the last return txt and txt_l files. The script automatically selects all 

of the files and converts them into tins with the [name]_l and no extension. When viewed 

in the windows browser they will show up as folders. 

 

/* Following segment was added by Matthew Walsh 
/* 13 March 2003 
/* Allowed the automation of many tin files in one directory 
/* Update of origonal files from Ralph Haugerud of USGS 
 
&sv file [filelist *.txt last.list -file] 
 
/* opens file list 
&sv fileunit [open last.list openstat -read] 
&if %openstat% ne 0 &then  
   &return Problem opening file 
 
/* reads file list 
&sv tilefull [read %fileunit% readstat] 
&if %readstat% ne 0 &then  
   &return Problem reading file 
 
&do &while %readstat% = 0 
   &sv tile [entryname %tilefull% -noext] 
 &if [exists %tile%_l -tin] &then kill  %tile%_l all 
 createtin %tile%_l 0.01 0.01 
          generate %tile%.txt_l 
   end 
   &sv tilefull [read %fileunit% readstat] 
&end 
 
/* closes file 
&if [close %fileunit%] ne 0 &then 
   &return Cannot close file 
 
/* deletes file 
&sv delstat [delete last.list -file] 
&return  
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APPENDIX E:  Virtual Deforestation and Aggregation AMLs   

 

These are the most time consuming parts of the process. VDF, DESPIKE3 and 

ELAPSEDTIME are all used by running VDF. These are the deforestation processes. 

There are four variable of interest that can be set in the VDF script. These are DZ1, DZ2, 

POINTSLOST TOLERANCE, AND MAXITERATIONS which are all set in VDF. DZ1 

is the distance that a point can be above the local average tin height before it is removed. 

DZ2 is the maximum distance that a point can be below the average tin height before it is 

removed, POINTSLOSTTOLERANCE is the percent of points that can be lost in a round 

before the program jumps out, used to control small data sets. The MAXITERATIONS is 

the number of rounds that can be run before the program will automatically jump out 

even if the POINTSLOSTTOLERANCE is not reached. In the DESPIKE3 script there is 

one setting to note and that is the 2' grid sizes in the tinlattice command. 

 

The TIN2DEM.AML is the final script in the set. It was created to convert all of the 

deforested tins in the ground folder into one single tin which in turn is used to create a 

grid and DEM file. The output files are called MASTER_TIN, MASTER_GRD, and 

MASTER_DEM. No arguments are needed. 

 

VDF.aml 

/* AML vdf 
/* 27 July 2000 
/* Ralph Haugerud, USGS - Seattle 
 
/* TILENAME is input TIN, presumably the last-return surface 
 
/* Following segment was added by Matthew Walsh 
/* 13 March 2003 
/* Allowed the automation of many tin files in one directory 
 
&sv file [filelist * tin.list -tin] 
 
/* opens file list 
&sv fileunit [open tin.list openstat -read] 
&if %openstat% ne 0 &then  
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   &return Problem opening file 
 
/* reads file list 
&sv tilename [read %fileunit% readstat] 
&if %readstat% ne 0 &then  
   &return Problem reading file 
 
&do &while %readstat% = 0 
 
/* 
/* This is the beginning of the original file from Ralph for processing 
/* 
&if [null %tilename%] &then &do 
  &type USAGE &r vdf <tin>, where <tin> is a last-return  
  &type   surface of LIDAR data 
  &type 
  &return 
&end 
 
/* units are feet, for data with circa 3' point spacing,  
/* and with 2-ft cells in despike3.aml 
  &s ProximityTolerance = 0.01 
  &s dz1 = 0.7 
  &s dZ2 = 100 
  &s PointsLostTolerance = 0.1 
  &s MaxIterations = 16 
   
  &s NIterations = 1 
  &s starttime = [date -time] 
 
/* first pass, no pit elimination 
  &s teststring = spot < MeanZ + %dZ1%  
  &s itstart = [date -time] 
  &r despike3 %tilename% 0.01 [quote %teststring%] 
  &r elapsedtime %itstart% 
  &type Tile %tilename%, time for iteration %NIterations% = %.ElapsedTime% 
 
/* Now, eliminating pits, iterate to quasi-convergance 
  &s teststring = spot < meanZ + %dZ1% AND spot > meanZ - %dZ2% 
  &do &until %.PercentLost% < %PointsLostTolerance% OR %NIterations% = 
%MaxIterations% 
    &s NIterations = [calc %NIterations% + 1] 
    &s itstart = [date -time] 
    &type Starting iteration %NIterations%  at %itstart% 
    &r despike3 %tilename% %ProximityTolerance% [quote %teststring%] 
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    &r elapsedtime %itstart% 
    &type Tile %tilename%, time for iteration %NIterations% = %.ElapsedTime% 
  &end 
 
  &r elapsedtime %starttime% 
  &type 
  &type Tile %tilename% 
  &type Iterations = %NIterations% 
  &Type Total time = %.ElapsedTime% 
/* 
/* This is the end of the original file from Ralph for processing 
/* 
  &sv tilename [read %fileunit% readstat] 
&end 
 
/* closes file 
&if [close %fileunit%] ne 0 &then 
   &return Cannot close file 
 
/* deletes file 
&sv delstat [delete tin.list -file] 
 
  &return 
 

DESPIKE3.aml 

/* DESPIKE3.AML 
/* AML to take spikes off of a TIN 
/* version of 27 July 2000 
/*    Ralph Haugerud, USGS - Seattle 
/*    rhaugerud@usgs.gov 
/* 
&args intin ProximityTolerance teststring 
 
&if [null %intin%] &then &do 
  &type 'USAGE &R despikeg3 <intin> {ProximityTolerance} {Teststring} 
  &type     default ProximityTolerance is 0.01 
  &type     default Teststring is 'spot <= meanZ + 0.7' 
  &type 
  &return 
  &end 
 
/*** set defaults 
  &if [null %ProximityTolerance%] &then &s ProximityTolerance = 0.01 
  &if [null %teststring%] &then &s teststring = 'spot <= meanZ + 0.7' 
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  &s teststring = [translate %teststring%] 
  &s teststring = [unquote %teststring%] 
 
/*** Turn TIN into point cover 
  &if [exist xxpoint -cover] &then kill xxpoint all 
  tinarc %intin% xxpoint POINT 
 
/*** get "mean" value of Z around each point 
  &if [exist xxmean -grid] &then kill xxmean all 
  tinlattice %intin% xxmean 
  [unquote ''] 
  [unquote ''] 
  [unquote ''] 
  2 
  &if [exist xxmeang -grid] &then kill xxmeang all 
  grid 
    xxmeang = focalmean(xxmean) 
    quit 
  kill xxmean all 
  latticespot xxmeang xxpoint meanZ 
  kill xxmeang all 
   
/*** have had some problems with CREATETIN crashing when it is   
/*** presented with NODATA values in meanZ, so get rid of them 
  &if [exist xxpoint2 -cover] &then kill xxpoint2 all 
  rename xxpoint xxpoint2 
  ap 
    reselect xxpoint2 point meanZ <> -9999 
    &s trash = [delete x.sl -file] 
    &s trash = [delete x.sx -file] 
    writesel x.sl 
    quit 
  reselect xxpoint2 xxpoint point x.sl 
  kill xxpoint2 all 
   
/* create new tin from original points, filtered 
/* by criteria in test string     
&if [exist %intin% -tin] &then kill %intin% all 
createtin %intin% 0 %ProximityTolerance% 
  cover xxpoint POINT spot 1 # %teststring% 
  END 
   
  &describe xxpoint 
  &s np1 = %DSC$POINTS% 
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  &describe %intin% 
  &s np2 = %TIN$NNODES% 
 
  &s .PercentLost = [calc ( %np1% - %np2% ) * 100 / %np1% ] 
  &type 
  &type Percent points removed this iteration = %.PercentLost%   
  &type 
   
  kill xxpoint all 
 
&return  
 
ELAPSEDTIME.aml 

/*  AML elapsedtime 
/*  note that starttime = [date -TIME] 
&arg starttime   
 
  &s endtime = [date -time] 
  &s sthr = [before %starttime% .] 
  &s stmin = [after %starttime% .] 
  &s stsec = [after %stmin% .] 
  &s stmin = [before %stmin% .] 
  &s endhr = [before %endtime% .] 
  &s endmin = [after %endtime% .] 
  &s endsec = [after %endmin% .] 
  &s endmin = [before %endmin% .] 
  &s endtime =  [calc %endhr% + ( %endmin% / 60 ) + ( %endsec% / 3600 ) ]     
  &s starttime = [calc %sthr% + ( %stmin% / 60 ) + ( %stsec% / 3600 ) ] 
  &s eltime = [calc %endtime% - %starttime% ] 
  &if %eltime% < 0 &then &s eltime = [calc %eltime% + 24 ] 
  &s elhr = [trunc %eltime%] 
  &if %elhr% < 10 &then &s elhr = 0%elhr% 
  &s eltime = [calc ( %eltime% - %elhr% ) * 60 ] 
  &s elmin = [trunc %eltime%] 
  &if %elmin% < 10 &then &s elmin = 0%elmin% 
  &s elsec = [round [calc ( %eltime% - %elmin% ) * 60 ] ] 
  &if %elsec% < 10 &then &s elsec = 0%elsec% 
  &s .ElapsedTime = %elhr%:%elmin%:%elsec% 
  &return 
 
 



 

  

59
APPENDIX F:  Programs Used For Flow Direction  

 

SAGA – http://geosun1.uni-geog.gwdg.de/saga/ 

ArcGIS – http://www.esri.com/ 

TauDEM – http://hydrology.neng.usu.edu/taudem/ 

TAS – http://publish.uwo.ca/~icreed/tas.htm 

 

SAGA preformed the D8, Dinf, MFD, and DEMON flow direction algorithms that were 

tested of this study.  The main reasoning in using SAGA was that most programs could 

not handle a large LiDAR dataset.  TAS, TauDEM and at times ArcGIS would fail when 

attempting to use a 2-m LiDAR DEM.  SAGA used a memory cache to process data.  In 

doing this, process time increased significantly in calculating DEMON, Dinf, and MFD 

flow algorithms.  Demon at 2-m grid size took at around a day to compute while MFD 

and Dinf was half that.  D8 only took a few hours.  Using 6-m grid cell size, process time 

for all flow direction algorithms decreased to a few hours. 

 

SAGA was verified using ArcGIS for the D8, TauDEM for Dinf and TAS for MFD on a 

10-m DEM.  DEMON was verified by Dr. Steven Burges.  Regression analysis was 

performed on the flow accumulation outputs from the 10-m DEM by the flow direction 

types.  The only differences were in how the algorithms handled flat terrain.  Appendix 

Figure F1 and Appendix Table F1 is an example of the regression analysis that was done 

to verify SAGA performed the flow direct algorithms accurately. 
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Appendix Figure F1.  Correlation between Dinf algorithms by TauDEM and SAGA 

 

Appendix Table F1.  Regression outputs from Appendix Figure E1 

Regression Analysis 
N = 1966041 Linear Regression:   Y = 0.861927 * X +1.228089 
SAGA dinf:    (r=0.8654, r²=0.7489) 
  Min. = 7.043411  Max. = 20.423664 
  Arithmetic Mean = 9.711222  
  Variance = 1.725083  
  Standard Deviation = 1.313424  
TauDEM dinf:   
  Min. = 7.043411  Max. = 19.798889 
  Arithmetic Mean = 9.584567  
  Variance = 1.711332  
  Standard Deviation = 1.308179  
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APPENDIX G:  Regression Correlation of Flow Direction Algorithms with Increased 

Resolution 

 

D8 vs. DEMON 

 
Appendix Figure G1. Plot of entire catchment area for a 2-m LiDAR DEM at Tahoma 

State Forest (Natural Log Values).  The correlation between D8 and DEMON flow 

direction models indicates that D8 is a sufficient model for determining stream 

networks. 
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Appendix Figure G2. 6-m LiDAR Plot of catchment area comparing Demon and D8 
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Appendix Figure G3. 10-m LiDAR Plot of catchment area comparing Demon and D8 
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Appendix Figure G4. 10-m USGS plot of catchment area comparing Demon and D8 
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D8 vs. Dinf 

 
Appendix Figure G5. 2-m LiDAR Plot of catchment area comparing Dinf and D8 
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Appendix Figure G6. 10-m USGS Plot of catchment area comparing Dinf and D8 
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MFD vs. Dinf 

 
Appendix Figure G7. 6-m LiDAR Plot of catchment area comparing Dinf and MFD 
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Appendix Figure G8. 10-m USGS Plot of catchment area comparing Dinf and MFD 
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APPENDIX H:  D8 Comparison at 10-m Resolution of USGS and LiDAR Generated 

Data 

 

 
Appendix Figure H1. The D8 flow algorithm applied to the USGS and LiDAR Generated 

10-m DEM.  Illustrates that stream channels with a catchment size of about 12-ha and 

greater somewhat converge between the two DEM’s with regards to D8.  When 

catchments are less than 12-ha, differences in stream channel location are shown. 
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Appendix Figure H2. USGS and LiDAR Generated 10-m, D8 Comparison.  Streams 

identified as identical if 30-m apart. 
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Appendix Figure H3. USGS and LiDAR Generated 10-m, D8 Comparison.  Streams 

identified as identical if 90-ft apart. 
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APPENDIX I:  Statistics For Binary Linear Regression 

 

The statistics were broken into steps to determine which variables would best work for an 

equation.  All statistics were done in SPSS.  Below are the significant steps taken and the 

variables in each step.  Step 3 is the most significant. 

Step 1: Log10(Basize) 

Step 2: Log10(Basize), Precipitation 

Step 3: Log10(Basize), Precipitation, Slope 

Elevation, downstream gradient and site class are not part of the steps due to it being 

insignificant for the model. 

Hosmer and Lemeshow Test 
Step Chi-square df Sig. 
1 8.864 7 0.263 
2 9.900 8 0.272 
3 10.262 8 0.247 

Appendix Table I1.  The Hosmer-Lemeshow statistic.  Indicates a poor fit if the 

significance value is less than 0.05. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

  

73
Contingency Table for Hosmer and Lemeshow Test 

    Head = .00 Head = 1.00   
    Observed Expected Observed Expected Total 
Step 1 1 14 13.289 0 0.711 14 
  2 10 9.966 1 1.034 11 
  3 8 9.082 3 1.918 11 
  4 8 7.142 3 3.858 11 
  5 3 5.195 8 5.805 11 
  6 4 3.662 7 7.338 11 
  7 2 2.283 9 8.717 11 
  8 4 1.572 7 9.428 11 
  9 0 0.810 15 14.190 15 
          
Step 2 1 11 10.632 0 0.368 11 
  2 11 10.225 0 0.775 11 
  3 10 9.602 1 1.398 11 
  4 6 7.908 5 3.092 11 
  5 6 5.435 5 5.565 11 
  6 2 4.162 9 6.838 11 
  7 2 2.679 9 8.321 11 
  8 4 1.567 7 9.433 11 
  9 1 0.644 10 10.356 11 
  10 0 0.147 7 6.853 7 
          
Step 3 1 11 10.903 0 0.097 11 
  2 11 10.543 0 0.457 11 
  3 11 9.741 0 1.259 11 
  4 6 7.948 5 3.052 11 
  5 4 5.371 7 5.629 11 
  6 4 3.887 7 7.113 11 
  7 2 2.508 9 8.492 11 
  8 4 1.466 7 9.534 11 
  9 0 0.554 11 10.446 11 
  10 0 0.079 7 6.921 7 

Appendix Table I2.  This statistic is the most reliable test of model fit for SPSS binary 

logistic regression, because it aggregates the observations into groups of cases. 
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Appendix Figure I1.  Deviance plot change helps identify cases that are poorly fit by the 

model. 
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Appendix Figure I2.  The shape of the Cook's distances plot generally follows that of the 

previous figure, with some minor exceptions. These exceptions are high-leverage 

points, and can be influential to the analysis. 
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Variables not in the Equation 
      Score df Sig. 
Step 1 Variables PRECIP 4.452 1 0.035 
   Slope 3.242 1 0.072 
   Elevation 2.268 1 0.132 
   Downgrad 0.611 1 0.434 
   Site Class 0.152 1 0.696 
  Overall Statistics  11.696 5 0.039 
Step 2 Variables Slope 6.284 1 0.012 
   Elevation 0.450 1 0.502 
   Downgrad 2.153 1 0.142 
   Site Class 0.148 1 0.700 
  Overall Statistics  7.889 4 0.096 
Step 3 Variables Elevation 0.644 1 0.422 
   Downgrad 1.126 1 0.289 
   Site Class 0.121 1 0.728 
  Overall Statistics   1.658 3 0.646 
Appendix Table I3.  Forward stepwise methods variables left from steps 

 

Model if Term Removed 
Variable   Model Log Change in -2 Log   Sig. of the 
    Likelihood Likelihood df Change 
Step 1 Log10(BASIZE) -73.474 55.107 1 0.000 
Step 2 Log10(BASIZE) -73.455 59.991 1 0.000 
  PRECIP -45.920 4.921 1 0.027 
Step 3 Log10(BASIZE) -73.422 66.715 1 0.000 
 PRECIP -44.246 8.363 1 0.004 
  Slope -43.460 6.789 1 0.009 

Appendix Table I4.  The variables chosen by the forward stepwise method all having 

significant changes in -2 log-likelihood. 

 

Step -2 Log likelihood Cox & Snell R Square
1 91.840 0.405
2 86.919 0.432
3 80.130 0.468

Model Summary

0.541
0.577
0.623

Nagelkerke R Square

 
Appendix Table I5.  The pseudo r-squared statistics. 



 

  

77
 

Classification Table(a) 
      Predicted 
    Head Percentage 

 Observed 0 1 Correct 
Step 1 Head 0 41 12 77.358 
   1 8 45 84.906 
  Overall Percentage       81.132 
Step 2 Head 0 40 13 75.472 
   1 9 44 83.019 
  Overall Percentage       79.245 
Step 3 Head 0 41 12 77.358 
   1 6 47 88.679 
  Overall Percentage       83.019 

Appendix Table I6.  The classification table indicating the practical results of using the 

logistic regression model. 

 

Variables in the Equation 

                
95.0% C.I.for 
EXP(B) 

    B S.E. Wald df Sig. Exp(B) Lower Upper 
Step 
1(a) Log10(BASIZE) 5.115 0.935 29.948 1 0.000 166.464 26.653 1039.659 
  Constant -2.711 0.570 22.617 1 0.000 0.066     
Step 
2(b) Log10(BASIZE) 5.753 1.064 29.241 1 0.000 315.028 39.157 2534.451 
  PRECIP 0.336 0.165 4.157 1 0.041 1.400 1.013 1.934 
  Constant -30.754 13.849 4.931 1 0.026 0.000     
Step 
3(c) Log10(BASIZE) 7.235 1.425 25.766 1 0.000 1386.737 84.879 22656.314 
  PRECIP 0.477 0.184 6.697 1 0.010 1.612 1.123 2.313 
  SLOPE 0.096 0.040 5.786 1 0.016 1.101 1.018 1.191 
  Constant -45.172 16.050 7.921 1 0.005 0.000     

 Appendix Table I7.  The parameter estimates table summarizing the effect of each 

predictor. 
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Appendix Figure I3.  Boxplots comparing the distribution of % slope and basin size 

values for PIP’s. 


