
Cross-drain Placement to Reduce Sediment Delivery from Forest Roads to Streams

Florentiu Damian

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science

University of Washington

2003

Program Authorized to Offer Degree: College of Forest Resources

University of Washington
Graduate School

This is to certify that I have examined this copy of a master’s thesis by

Florentiu Damian

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Peter Schiess

Bruce Lippke

Gerard Schreuder

Date: ______________________

In presenting this thesis in partial fulfillment of the requirements for a Master’s degree at

the University of Washington, I agree that the Library shall make its copies freely

available for inspection. I further agree that extensive copying of this thesis is allowable

only for scholarly purposes, consistent with "fair use" as prescribed in the U.S. Copyright

Law. Any other reproduction for any purposes or by any means shall not be allowed

without my written permission.

Signature____________________________

Date________________________________

University of Washington

Abstract

Cross-drain Placement to Reduce Sediment Delivery from Forest Roads to Streams

Florentiu Damian

Chair of the Supervisory Committee:
Professor Peter Schiess

Management and Engineering Division, College of Forest Resources

Ditch relief culverts can reduce road sediment delivery to streams by allowing infiltration

and sediment filtering across the forest floor. Below the last ditch relief culvert, all the

sediment routed by the ditch will be delivered directly to the stream. The last ditch relief

culvert should be as close to the stream crossing as possible. If the ditch relief culvert is

too close to the stream however, then there is little potential for sediment filtering. This

tradeoff between minimizing the amount of water delivered directly to the stream and

maximizing the distance for outflow filtration poses a question of where the last ditch

relief culvert should be placed.

A model has been developed which allows a designer to place ditch relief culverts at

various locations and subsequently evaluate their impact on sediment delivery to streams.

The main feature of the model is its immediate feedback to the forest engineer in visual

as well as quantitative form. It allows the designer to dynamically assess the sediment

impacts associated with each culvert as it is placed on the road network. Sediment

delivery and routing algorithms are based on accepted methodologies. Current as well as

planned roads can be evaluated and the potential for improvements documented in a

quantifiable and repeatable way.

The model was tested on a portion of the Tahoma State Forest, situated south of Mt.

Rainier. Two existing road systems with 28 and 39 stream crossings and 82 and 86 cross

drain culverts respectively, were analyzed. Interactively relocating 20 and 35 of the cross

drains resulted in a three quarter reduction in sediment delivered to the stream system.

The last culvert was usually placed about 100 - 200 ft of a stream according to local

conditions, challenging one of the regulatory recommendations to place a cross drain

within 100 ft of a stream crossing. Forest engineers and regulators now have a design tool

to assess effectiveness of a cross drain system rather then simply relying on culvert

spacing and count.

i

TABLE OF CONTENTS

Page

List of Figures…………………………………………………………………………….iii

List of Tables………………..…………………………………………………………….v

The Road Sedimentation Problem .. 1

Road Prism Structure and Drainage Patterns.. 1

Sediment Production and Delivery Mechanisms.. 4

Current Management Techniques for Reducing Sediment Impacts from Forest Roads 6

Cross Drain Systems and Sediment Reduction... 8

Policy and Design Restrictions ... 10

Sediment Modeling and Existing Tools.. 11

The Need for a Specialized Cross Drain Design Tool .. 14

Goals and Objectives .. 16

Concepts... 17

The Cut-Off Culvert.. 17

Minimization of Sediment Delivery for a Simple Case.. 18

Exploring Optimization of Cross Drain Systems.. 23

Computer Modeling of Cross Drain Systems... 27

Culvert Location Analysis for Design Purposes... 27

Interactive Culvert Placement... 28

CULSED- A Decision Support Tool for Cross Drain System Design 29

Modeling Cross Drain Systems with CULSED.. 30

Results of a Cross Drain Redesign Application ... 35

North Tahoma Planning Area ... 35

Original Sediment Delivery .. 36

ii

Design Process Example... 40

Sediment Reduction by Cross Drain System Redesign .. 42

Weaknesses and Shortcomings ... 45

Discussion... 48

Importance of Better Models .. 48

List of References.. 51

Appendix A – CULSED Software Manual ... 53

Program Requirements.. 53

Installation... 53

Data Requirements.. 54

Software Tutorial .. 55

Workflow Example... 62

Appendix B – CULSED Visual Basic Computer Code.. 66

Common Implemetation Interface Code... 66

Default Sediment Model Code.. 67

CULSED Main Program Code ... 93

iii

LIST OF FIGURES

Page

Figure 1: Schematics of common cross drain types.. 2

Figure 2: Cross sectional prism types with their drainage patterns 3

Figure 3: Cross section of insloped road prism with cross drain.. 9

Figure 4: Cross drain system dispersing sediment.. 10

Figure 5: Screen capture of the WEPP:Road interface... 13

Figure 6: Effects of moving cut-off culvert C along the road alignment.......................... 18

Figure 7: Analysis setup for a single cut-off culvert scenario .. 19

Figure 8: Sediment delivery rate to stream for various sediment production rates 21

Figure 9: Sediment delivery rates for various stream crossing angles.............................. 22

Figure 10: Setup for the two cross drain experiment.. 23

Figure 11: Example of a real case road layout with culverts.. 25

Figure 12: Flow chart of cross drain design workflow... 28

Figure 13: Sediment delivery represented as proportional symbols................................. 30

Figure 14: CULSED Model-View-Controller internal architecture 31

Figure 15: Logical network of the ditch model .. 33

Figure 16: Shaded relief model of the North Tahoma planning area 36

Figure 17: Initial sedimentation from East North Tahoma road network......................... 38

Figure 18: Initial sedimentation from West North Tahoma road network 39

Figure 19: Composite map of a culvert placement investigation process 41

Figure 20: Sediment delivery from East North Tahoma road network after redesigning the

cross drain system... 43

Figure 21: Sediment delivery from West North Tahoma road network after redesigning

the cross drain system ... 44

Figure 22: Topographic detail of North Tahoma, 6ft resolution DEM............................. 50

iv

Figure 23: The Component Category Manager Application for registering CULSED

components ... 54

Figure 24: The CULSED toolbar.. 55

Figure 25: Start menu item ... 56

Figure 26: Set up road grade menu. .. 57

Figure 27: Set up road intersections with more than one water routing choice................ 59

Figure 28: Sediment modeling parameters ... 60

Figure 29: Option menu. Default Sediment Model (left), Default Road (right)............... 62

Figure 30: Road Geometry Setup has been run. A road grade is computed..................... 63

Figure 31: Flow Setup and Sediment Analysis have been run ... 64

Figure 32: Culverts have been moved to near optimal locations...................................... 65

v

LIST OF TABLES

Page

Table 1: Reduction of total sediment delivered (overland and ditch) with 2 culverts...... 24

1

The Road Sedimentation Problem

Road Prism Structure and Drainage Patterns

Forest roads are at the core of modern forestry, providing quick, economical access to the

wooded areas. To facilitate forest operations in areas managed for timber production, a

well developed network of roads must exist. Timber harvesting and forest management

activities drive the expansion of the existing networks into the inaccessible parts of

watersheds and sub-basins. As engineered structures on the landscape, forest roads have

the potential to disrupt the drainage characteristics of the watersheds they traverse by

altering their natural flow patterns. Water from precipitation fallen on the exposed road

surface, moving under the influence of gravity, follows a new path dictated by the local

road grade. The cuts required by the basic structure of a road prism across a hillside also

capture overland flow in close vicinity of the road tread. The accumulation and

movement of this water within the roadway is detrimental to the well functioning of the

road (Schiess and Whitaker 1986). Problems ranging from erosion of the traveling

surface to saturation of the sub-grade and mass failure stem from these circumstances.

Such processes are usually accelerated during storm events as larger volumes of water

move at higher velocities, developing more destructive energy. In order to keep the road

prism in good condition and avoid structural damage, roads are outfitted with drainage

features.

Three essential prism components determine the water flow within the roadway: the road

crown, the road ditch and the cross-drains. The crown represents the side sloping of the

road surface. Its main role is to disperse water laterally away from the tread and prevent

harmful flow routing along the travel surface. The side ditch, when present, collects and

routes water longitudinally along the road alignment towards the nearest stream crossing

or cross-drain structure. The cross drains are routing elements that empty the side ditch

and redirect its accumulated water across and away from the road prism, onto the side

slope, where it will reenter the natural flow regime. Frequently, cross drains are

2

implemented by drainage pipes built into the road bed but other, less common

implementations exist as well (Figure 1).

Flow

Downgrade

Road
Surface

Road
Surface

Downgrade

a. Open top culvert b. Intercepting rolling dip

c. Pipe culvert

Downgrade

Road
Surface

Figure 1: Schematics of common cross drain types

According to their drainage configuration forest roads can be classified in the following

categories: insloped with a ditch, crowned with a ditch, outsloped with ditch and

outsloped with no ditch (Figure 2). Each of these types generates different drainage

patterns and impacts the original watershed drainage accordingly.

3

Insloped with side ditch Outsloped with side ditch

Crowned with side ditch Outsloped with no ditch

Insloped with no side ditch

Figure 2: Cross sectional prism types with their drainage patterns

The insloped roads with a side ditch are a common occurrence among forest roads due in

part to their ease of maintenance and increased traffic security. The drainage system of an

insloped road involves a side ditch, cross drains and stream crossings. The surface of the

road, being sloped inwards toward the cut slope, reroutes all water it captures to the side

ditch. Consequently, the surface runoff intercepted by the cut bank is concentrated with

the rerouted road capture. This can potentially lead to the accumulation of high volumes

of water in the ditch. If no cross drains are present this water spills out at the end of the

ditch, often directly into a stream at the nearest stream crossing. In cases where the road

grade is relatively high, the energy of the moving water can reach potentially destructive

levels. Cross drains are placed along the road alignment at various locations to empty the

side ditch and reduce the possibility of water induced road and environmental problems.

4

At the opposite pole of road prism drainage types are the outsloped roads with no side

ditch. The outlsoped roads with no ditch disperse all the water they capture on their fill

slope. In the absence of a side ditch, concentration and rerouting of large volumes of

water does not take place. As the energy of the flowing water is kept to lower levels, its

damaging potential is also reduced. Moreover, the lack of direct ditch drainage into a

stream network induces less hydrologic disturbance. Harmful processes of erosion and

sedimentation generated by moving water are minimal. From an environmental

standpoint, the outsloped road type represents a more suitable design. However, traffic

security concerns raised by log trucks and heavy equipment, critically restrict its

usability. Outsloping is normally applied to minor roads and spurs.

Other intermediary road types inheriting physical characteristics from both the insloped

and outlsoped roads do exist (Figure 2). Their hydrologic impacts on the environment are

closer to one or the other base types described above, with variations dictated by their

elemental differences.

Sediment Production and Delivery Mechanisms

Stream sedimentation is an environmental problem generated by the expansion of

sediment into streams in excess of the natural amount from hill-slope erosion and soil

creep. Forest roads have been identified as a major contributor to sedimentation. Fine

sediment generated by roads is transported into adjacent streams, leading to degradation

of water quality and damage to aquatic habitat (WA Forest Practices Board 2000).

Sedimentation from roads can be approached from two major perspectives: sediment

production and sediment delivery.

Sediment production refers to the physical generation of sediment, the process of

detaching soil and parent material particles under the influence of various agents.

Different premises govern the generation of sediment on each individual road component.

The cut and fill slopes are subject to surface erosion occurring when detachable soils are

5

exposed to erosion factors such as: overland flow, raindrop splash, freeze-thaw, dry ravel,

and other biogenic processes (WA Forest Practices Board 1997). The litter cover,

typically present in a forested environment, protects the soil against all these factors by

dissipating erosive energy before it reaches the surface. Road construction operations

however, expose the soils on the cut and fill banks, increasing the potential for particle

detachment. New roads tend to generate significant quantities of sediment for the first

few years of their existence but in time, as side slopes re-vegetate, the sediment

production drops. The road’s running surface is another major sediment producer. Traffic

is the destructive agent acting upon the surface material. The action of tires against the

road surface will grind and dislocate particles into smaller units that can eventually be

carried away by other agents like water and wind. Some researches consider traffic to be

the single most essential factor influencing sediment generation, capable of increasing

sediment amounts by one order of magnitude or more (Reid and Dunne 1984). The side

ditch can also be considered as a source of sediment where the erosion is caused by

moving water. In the cases where water gains sufficient energy to overcome the soil’s

sheer strength, particle detachment is observed.

Sediment delivery refers here to the transportation of sediment generated by the road

prism into neighboring stream networks. Fine sediment travels in suspension, carried by

overland flowing water along its paths towards the river system. As an active component

of watershed hydrology, the road drainage has a fundamental impact on the sediment

delivery process. By determining the local water flow within and about the roadway, the

road drainage implicitly controls the sediment routing (Section: Road Crowning and

Drainage Patterns). The various road drainage configurations in conjunction with the

actual road location drastically affect the amount of sediment reaching the stream. For

example, in the cases of roads that have numerous water crossings, the presence of a side

ditch establishes a direct connectivity between the road drainage and the stream network.

The side ditch typically empties at stream crossings, unloading all accumulated sediment

into the water. This configuration results in a high potential for stream sedimentation.

6

Other high delivery scenarios include valley bottom roads that run parallel and within

close distance to a stream. Large quantities of sediment can reach the stream laterally

through surface runoff and water diverted from existing cross drain culverts. On contrast,

roads with an outsloped surface geometry and ridge top roads located far away from any

streams, have minimal impacts on sedimentation and can be considered as disconnected

from the natural watershed drainage.

An important aspect when examining overland delivery on lateral slopes is the site’s

filtering potential. Through filtering, parts of the sediment produced by the road are

deposited before they have a chance to enter the stream network. Filtering is a complex

process, fundamentally based on energy loss and infiltration. The carrying water’s

transport capacity is proportional to its velocity. By reducing water velocity soil particles

are dropped from suspension and settle down. The porosity of the soil surface influences

the infiltration rates and further contributes to the deposition and absorption of fine

sediment. In practice, a reduction of sediment delivery is obtained by diverting the water

onto vegetated side slopes where the litter layer, plants, and gentle slopes can slow down

the surface runoff enough to trigger these filtering effects. Various researchers have

shown that the nature of the parent material and the local micro-topographical features

have a major influence on the distance the sediment can travel downhill on a side slope.

In some extreme cases these distances can be fairly significant (Ketcheson and Megahan

1996), but usually the filtering effects are seen within the first 200 ft from the road (WA

Forest Practices Board 1997).

Current Management Techniques for Reducing Sediment Impacts from

Forest Roads

Contemporary forest practices regulation requires protection of the neighboring streams

from harmful road generated sediment. Although no quantification of minimum

acceptable impacts is provided, it is desired that water quality and aquatic habitat not be

affected. Ideally no sediment from roads would be delivered to streams (WA Forest

7

Practices Board 2000). In order to meet regulation requirements several road

management techniques are effectively applied.

A large part of these techniques address the sedimentation at the production end, acting

directly onto the sediment producing factors:

Road resurfacing is the process of replacing a highly erodible road surface like

native dirt or thin gravel with a more traffic resistant surface such as thick gravel

or pavement. This method can be very effective but also labor intensive and

expensive.

Road gating reduces traffic during the non-logging seasons. Unused roads are less

likely to produce sediment; however the major part of the sediment is still

generated during the high traffic season.

Road abandonment and decommissioning are methods that alter the road prism in

order to restore the natural drainage patterns. With abandonment a road is

prepared for an extended period of stagnation by removing stream crossings

culverts, closing it to traffic and outfitting it with water bars. Decommissioning

implies the destruction of the entire road prism, returning the side slope to an

approximate natural state. A drastic decrease in sedimentation can be obtained

this way.

Re-vegetation represents an accelerated stabilization of the road’s cut and fill

banks as means to reducing sediment production especially during the first years

of the roads existence when these parts are more active.

Other methods are centered on the actual sediment transport, designed to decrease

sediment impacts by obstructing the physical flow of sediment into streams:

Sediment trapping is a popular technique of filtering ditch water prior to spilling

into the streams at stream crossings. The sediment traps are manmade devices that

intercept sediment, typically through decantation, and require periodical

maintenance to assure optimal functionality. This method has been proved

8

effective especially when combined with other sediment reducing means

described above.

Cross Drain Systems and Sediment Reduction

Cross drain systems have originally been devised as an engineered solution for reducing

the adverse effects of excess water within the roadway. They are commonly composed of

culverts placed at key locations along the road alignment that drain the side ditch of its

accumulated water. Positioning and spacing of these culverts are essential for keeping the

road prism in a well functioning state. With the recent evolution of road design into a

more environmentally aware paradigm, a new challenge for the cross drain systems has

surfaced. Due to their intrinsic properties of intercepting and rerouting sediment-laden

ditch water, cross drain systems emerged as a potential solution to the stream

sedimentation problem. Thus, in addition to the functionality dictated by the prism health

state, another prerequisite was added: to reduce sediment delivery to stream networks.

Designing cross drain systems to meet this new functionality asks for an analysis of the

potential amount of sediment delivered by each culvert. In order to reduce sediment

delivery, a cross drain must divert the sediment-laden water from the road ditch onto the

side slope where it can be dispersed and filtered prior to reaching a stream (Figure 3).

9

A

B

C

D

E

A

B

C

D

E

Figure 3: Cross section of insloped road prism with cross drain; A – sediment accumulated along the
ditch from uphill sections; B – sediment generated by the cut slope; C – sediment generated by the
road thread; D – sediment dispersed by cross drain; E – new sediment accumulation cycle.

The filtering capabilities of a side slopes vary with location as micro-topography and

vegetation conditions fluctuate (Section: Sediment Production and Delivery

Mechanisms). As sediment accumulates continuously along the stretches of road between

culverts, the amount available at each location is directly affected by the cross drain

spacing. An effective reduction of the sediment delivery from a road network requires a

certain number of culverts strategically placed to take advantage of local filtering

capabilities (Figure 4). It is important to note that these locations may not always

coincide with optimal locations for prism drainage but are not mutually exclusive.

When the amount of sediment available for delivery at a particular culvert location

exceeds the lateral slope’s filtering potential sediment could still reach the stream. These

cases are often met where a road is located too close to the valley bottom or a cross drain

is placed too close to a stream crossing.

10

Figure 4: Cross drain system dispersing sediment. The red arrows indicate sediment routing
direction

Cross
Drain

Sediment
Dispersion

Ditch
Routing

Stream

Road

Isometric
Contours

Policy and Design Restrictions

The recent aquatic wildlife crisis in the Pacific Northwest in conjunction with an

increased awareness of environmental issues led to the adoption of a new policy for the

timber industry. As forest roads are considered potentially harmful to the environment a

particular set of restrictions has been imposed on forest road construction that directly

affects the cross drain system design. Designers are required to minimize entry of ditch

water and surface sediment into streams by dispersing sediment onto the forest floor.

Cross drain spacing is seen as an essential aspect of sedimentation reduction. Generally,

cross drains are to be spaced at regular intervals along the road. The distance between

culverts is provided as a function of road grade, side slope, average distance above

streams, road surface condition and use, precipitation, and soil erosion potential. The

11

rules also specify that the distance between a stream crossing and the first upslope cross

drain is important to the volume of sediment delivered and recommend that a culvert

should be installed 50 to 100 feet above all stream crossings (WA Forest Practices Board

Manual 2000).

Even though the site filtering potential is not explicitly referenced by the current

regulation, the cases where culverts are too close to a stream crossing and diverted

sediment could still reach the stream network are recognized. The manual recommends

either avoidance of such situations or implementation of additional measures such as

sediment traps or ponds, rock armored ditches, and vegetated ditches.

A sufficient number of cross drains should be installed in order to prevent ditch scour,

over flowing cross drain capacity or erosion at cross drain outlets. The manual requires

designers to make use of natural swales that the road crosses in order to avoid rerouting

water along the ditch, where it can pick up and transport sediment.

Using these guidelines makes it possible for an experienced professional to design a

functional cross drain system. However, one potential draw back of spacing cross drains

at regular intervals is that the site filtering potential might not be fully exploited. In areas

highly susceptible to sedimentation, a non-uniform spacing of culverts to take advantage

of local terrain and lateral sediment retention capabilities might be more suitable. For a

more rigorous analysis of the sediment production and delivery from forest roads some

specific software tools exist.

Sediment Modeling and Existing Tools

Due to the complex nature of the sedimentation process a precise measurement of

sediment impacts form forest roads is not always possible. Several software programs

were created in order to model the road-stream sediment interaction and estimate the

amount of sediment delivered.

12

The Water Erosion Prediction Project (WEPP) is a simulation program, originally

developed for agricultural purposes as a replacement for the Universal Soil Loss Equation

(Elliot et al. 1999b). It is a complex program that models the processes that lead to

erosion including infiltration and runoff, soil detachment, transport and deposition, plant

growth and residue decomposition. WEPP works with a given slope profile and runs

simulations over a specified period of time under a multitude of customizable parameters.

The Forest Service Moscow Lab has developed a set of specialized interfaces in order to

simplify WEPP use for erosion and sediment delivery from forest roads.

X-DRAIN is a basic interface to accessing predicted sediment yields from over 130,000

WEPP simulations ran by soil erosion specialists (Elliot et al. 1999a). It was developed to

simplify and speed up the application of WEPP for simple forest road settings. The end

user has limited control over climate, soil, side slope and distance to streams parameters.

Road geometry and distance to streams are assumed uniform along the analyzed road

segment. The total sediment yield in lb/year is presented on a tabular form for a fixed

number of combinations of road gradient and cross drain spacing values.

WEPP:Road is meant to be a more refined sediment modeler capable of modeling one

road segment at the time. As inputs, it accepts road surface information and a

customizable climate description. The modeling can be done over a user defined period

of time (Figure 5). The sediment yield to the stream network in lb is reported as a single

number together with the additional average precipitation, runoff, and the amount of

sediment leaving the eroding portion of the road prism. There is also the option of an

abbreviated hillslope output presenting a distribution of erosion and deposition, the

presence of a sediment plume in the forest, and the particle size distribution of sediment

delivered to the channel (Elliot et al. 1999c).

13

Figure 5: Screen capture of the WEPP:Road interface

One major limitation of the WEPP based programs is that they are spatially non-explicit

and thus incapable of distinctly placing the sedimentation processes within a road

network. Other organizations have approached this problem within a more spatially

aware context using Geographic Information Systems (GIS) as a base for their analysis.

GIS have become a standard in environmental modeling. Their capacity of modeling

overland flow is what makes them indispensable to spatially distributed phenomena

involving streams and water routing.

SEDMODL is a GIS based, road erosion and delivery model developed by Boise Cascade

Corporation in cooperation with the National Council on Air and Stream Improvement.

14

The model identifies road segments with a high potential for delivering sediment to

streams in a given watershed. It uses spatial information to determine the proximity of the

roads to the stream network. Sediment delivery is then calculated for the roads that drain

to streams using methods derived from the Washington Department of Natural Resources

Standard Method for Conducting Watershed Analysis and WEPP. The program is

designed as a flexible, multipurpose tool that can be used both for screening purposes or a

more detailed sediment analysis. For more reliable results a set of specific road attributes

is required. They can include: road use, surface type, road width, construction year,

cutslope height, road geometry type, and road gradient. If culvert locations are known

they can be inputted as GIS layer and will affect sediment computations accordingly

(National Center for Air and Stream Improvement 2002).

The Washington Road Surface Erosion Model (WARSEM) is new software from

Washington Department of Natural Resources intended as a long term road management

planning tool. It can model sedimentation and drainage at four different levels from the

broad basin scope to the individual road segment. An increasingly complex amount of

road information is required with each superior level. The model stresses out the

importance of accurate, field verified input data towards a successful sediment budget.

The model is implemented as an Access database without a spatial component.

SEDMODEL2 results can be imported to generate performance metrics in a long term

best management practices analysis (Watershed GeoDynamic et al. 2003)

The Need for a Specialized Cross Drain Design Tool

The contemporary emphasis on modeling the processes that lead to erosion and sediment

transport resulted in a well represented collection of computer programs. These software

tools were created as analysis packages and perform well when used for general

identification of sedimentation problem areas or when examining isolated parts of already

built road networks. However, as multiple design alternatives are evaluated during the

road design stage, these tools may fall short of functionality, prove slow and relatively

15

ineffective. They are focused on accurate modeling of sedimentation processes but do not

provide the means for minimizing total sediment delivered, especially important when

designing cross drain systems. None of these tools actively address the question of how

culvert placement impacts sediment delivery to stream networks. For example, as

WEPP:Road works with only one road segment at a time, using it to determine best

culvert locations and optimal spacing of a road drainage system would require multiple

simulations for each potential culvert movement. A typical investigation involving many

case scenarios, with culverts placed at various locations, requires repeated runs of the

model for all road segments affected by a the presence of a cross drain, at each particular

snap shot. This could become a very inefficient, time-consuming procedure especially for

long roads with multiple cross-drains where sediment producing factors vary a lot.

XDRAIN on the other hand, can only be used for roads with uniform conditions, being

limited to a constant road grade and considering culverts to be uniformly spaced. Users

cannot tell which one of the culverts has more potential to deliver sediment and it is

impossible to know what placement would possibly reduce sediment impact to streams.

SEDMODL automatically identifies and displays road segments that are probable to

deliver sediment based on, among other factors, a GIS layer of known culvert locations.

If trying to find the best possible locations for existing culverts or revise the number of

culverts to reduce sediment impacts, the culvert layer has to be modified manually and

the model rerun. This process, as in the WEPP case, can become inefficient if repeated

many times.

There is presently no methodology that allows a road engineer to quantify the effects of

varying culvert spacing or selecting specific culvert locations, on sediment delivery to

streams. The absence of such a design tool makes it more difficult to take culvert spacing

into account as an effective solution for reducing sediment impacts from forest roads.

16

Goals and Objectives

Goal:

Investigate culvert placement as a method for reducing sediment delivery to

stream networks from forest roads.

Objectives:

Develop a software program that allows engineers to quantify the effects of

varying culvert location along a road network with the following properties:

o Spatially explicit – associates sedimentation to precise locations on along

the road.

o Integrated with a standard geographic information system platform.

o Efficient - evaluates alternatives in a timely manner without using external

programs of procedures.

o Ease to use.

Illustrate the effectiveness of culvert placement for reducing sediment delivery to

streams with a real road-setting example.

17

Concepts

The Cut-Off Culvert

In order to analyze cross drain systems design and minimization of sediment delivery

from forest roads we introduce the term Cut-Off Culvert. The cut-off culvert is any

culvert that directs water across a vegetated hillslope. This differs from standard drainage

culverts that divert water into a stream channel. Typically cutoff culverts are placed

solely to reduce ditch erosion and maintain ditch flow capacity. Concurrently they can

also be used to reduce the direct delivery of sediment-laden water from the road’s ditch

by diverting it onto the forest floor where a major part of the sediment will be filtered out

and retained prior to entering the stream (Section: Cross Drain Systems and Sediment

Reduction). From the sediment reduction standpoint, the cut-off culvert’s location is

crucial to the well functioning of a cross drain system. Figure 6 shows the effects of

placing a cut-off culvert at different locations along a road segment.

The volumes of overland delivery (OD) from culvert C after filtering and direct delivery

from ditch (DD) are represented by the two colored areas. The total sediment delivered is

given by the summation of these two areas and fluctuates with culvert placement.

Assume that the amount of sediment produced by the road prism is constant in all three

cases, the side slope has uniform filtering capabilities and the lateral filtering is

proportional with the distance the sediment must travel downhill this side slope. It can be

noticed that by placing culvert C closer to the stream intersection increases its lateral

delivery potential while it decreases the direct delivery from ditch (Figure 6b).

Conversely moving culvert C away from the intersection gives more filtering power but

also leaves more contributing area for direct delivery (Figure 6c). The question of ideal

placement of a cut-off culvert becomes a question of maximizing the filtered sediment

(ND) at the expense of direct delivery (DD) and overland delivery (OD)

18

a. Initial set-up b. Culvert moved towards the stream crossing

OD – Amount of sediment from overland
delivery

DD – Amount of sediment from delivered
directly by the road ditch

ND – Amount of sediment not delivered (filtered)

c. Culvert moved away from stream crossing

COD

ND DD

Stream

Road

Stream

Road

DD
ND

OD
C

DDND

OD

Stream

Road

Figure 6: Effects of moving cut-off culvert C along the road alignment. To minimize sediment
delivery the sum of overland delivery OD and direct delivery DD has to be minimized by increasing
filtering ND.

Minimization of Sediment Delivery for a Simple Case

To explore the optimal location of a single cut-off culvert a simplified case scenario was

built (Figure 7). A straight 150m long road segment, of constant grade, crossing a

uniform slope hillside intersects a stream at an angle . The sediment generating factors

along the road segment and the filtering characteristics of the side slope are invariable. A

cut-off culvert is placed at a random location along the road alignment. A direct delivery

distance through the ditch (d) and a sediment- filtering potential characterize every

possible location.

19

°
o

dCulvert

Road grade
8%

Side slope
25%

Stream

Figure 7: Analysis setup for a single cut-off culvert scenario

The water dispersed by the culvert in question usually travels towards the stream on a

sinuous path following the local topography (flow distance). For simplification purposes

assume that the side slope’s topography is uniformly flat and this flow path is identical to

a straight perpendicular to the stream (Euclidian distance). The generic term: overland

distance (o) refers here to the Euclidian distance between culvert and stream (Figure 7).

The sediment filtering potential expressed here as the proportion of total available

sediment delivered to stream (F), varies with the overland distance (o) as well as other

site-specific factors like: soil types, local gradient and vegetation cover. Because the

overland distance (o) is in this case proportional with the direct distance (d) it can be

stated that the filtering potential (F) is also proportional with the direct distance (d). By

expressing F as a function of d the total sediment delivered to the stream can be budgeted

with Equation 1:

)(dFdLKdKT

Equation 1: Total sediment as a function of culvert location d

T = total sediment delivered (kg)

K = sediment production rate (kg/unit length of road prism)

L = total road length

20

F = fraction of sediment delivered (non-dimensional)

The minimum delivery T is obtained when:

0)()()(10 dFdLdF
dd
T

Equation 2: Optimal culvert location d

The optimal location for cut-off culvert C can be obtained by solving differential

Equation 2 for d. It can be noticed that the optimal location of C is not dependent on the

sediment production rate K but only on the road-stream geometry and the local filtering

characteristics.

In actuality, absolute deterministic models of side slope filtering potential to take into

account every combination of factors encountered on forested terrain are not currently

available. As the fraction of sediment delivered F cannot easily be determined a

completely analytical approach to culvert optimization is not feasible.

Various researchers have approached the problem on empirical bases, using statistical

inference on their field measurements in order to model sediment delivery. Equation 3

describes the volume of sediment deposition as a function of the travel distance for

particular conditions encountered in the Idaho Batholith (Ketcheson and Megahan 1996).

100

100
155.562.103

max

)
88.32

(

o
ox

eF
x

Equation 3: Empirically derived fraction of sediment delivered expressed as the percent of the
available sediment volume; o max is characteristic to granitic waterseds in Idaho Batholith

(Ketcheson and Megahan 1996)

21

By plugging equation 4 into the sediment budget equation the total sediment delivered for

our case scenario can be plotted as a function of the culvert location (Figure 8). A family

of curves is shown for various sediment production rates. A minimum delivery is

obtained with culvert C at 50 meters away from the stream intersection all across these

different sediment production regimes. It is important to note that empirically derived

equation 4 cannot be universally applied. However, assuming that in most cases overland

sediment delivery follows analogous invert exponential distributions (Burroughs and

King 1989) it is possible to effectively approximate near optimal locations for culverts.

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

meters from stream intersection

S
ed

im
en

t d
el

iv
er

ed
 -

kg
 /

ye
ar

K=10

K=20

K=30

K=40

K=50

K=60

K=70

Sediment
production
rates - kg / m

Figure 8: Sediment delivery rate to stream for various sediment production rates. Road segment is
150 m long, 4m wide; alpha is 45 degrees; sediment production rates K in kg/meter of road prism.
The fraction of sediment delivered is computed with Equation 3

Similar approaches have already been incorporated into some more advanced sediment

modeling programs. Therefore in order to further investigate the optimal placing of a cut-

off culvert, the F.S. WEPP:Road interface was called upon to provide the modeling for

the sediment production and delivery for the proposed case scenario. An experiment was

22

conducted where culvert C from the set-up in Figure 7 was incrementally moved along

the road segment. The sediment impacts associated with each of these locations were

quantified by WEPP simulations run at the Forest Service web site. The sediment

production parameters were: 4m wide, insloped bare ditch road, 5m long fill slope at 50%

gradient and silt loam soils. Olympia Station described the local climate. The forested

buffer had a uniform 25% slope. All simulations were performed for a 1-year period.

Multiple runs were completed for various stream crossing angles . Figure 9 presents a

graph of the results of this experiment. The total sediment delivered exhibits a similar

behavior to the Ketcheson and Megahan approach presented in Figure 8. It follows a right

skewed distribution with a minimum in the first 1/3 of the road segment. The optimal

culvert location for this particular case is located 50-60 m away from the stream crossing.

The geometry of the road-stream intersection has a major impact on the filtering distance

and implicitly affects the optimal cross drain location.

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

meters from stream crossing

Se
di

m
en

t D
el

iv
er

ed
 -

kg
 /

ye
ar

45

60
30

Road Grade 8 %

Stream Crossing
Angle:

Figure 9: Sediment delivery rates for various stream crossing angles; Road grade is constant at 8 %;
culvert at position on x-axis.

23

Exploring Optimization of Cross Drain Systems

Elaborating on the simple geometry single culvert case scenario presented above, the

question of further minimization of sediment delivery with the introduction of additional

culverts was explored. Another experiment was conducted where two adjacent culverts

were moved away and toward each other in an attempt to obtain a reduction in sediment

delivery. The setup for this experiment is seen in Figure 10. Note that the essential

simplification of flow path distance being identical to the Euclidian distance was

maintained from the previous case (Section: Minimization of Sediment Delivery for a

Simple Case)

Stream

45°

Culvert 2 Culvert 1

Road grade
8%

Side slope
25%

Side slope
25%

Figure 10: Setup for the two cross drain experiment

The total sediment delivered was recorded again using WEPP:Road. All WEPP sediment-

modeling parameters set in the previous experiment (one culvert scenario) were kept

unchanged. The stream intersection angle was set at 45 . Starting with the cut-off

Culvert1 in the optimal position previously determined at 60 m from the stream, the total

sediment delivered was computed with Culvert 1 and Culvert 2 at several different

locations. Due to the high number of possible combinations of 10m increments over a

150 m road segment only a few were fully explored. Table 1 present the results of this

experiment. The sediment delivery to stream S was reduced by as much as 58 % with the

cross drains at 30 and 90 m away from the stream crossing as compared to the case of a

24

single cut-off culvert in optimal location. Other possible combinations may further

improve this result. It can be inferred that the addition of a third culvert at a key location

could decrease sedimentation even more.

Table 1: Reduction of total sediment delivered (overland and ditch) with 2 culverts; road is 150m
long, 4 m wide; stream crossing angle is 45 degrees. Configuration 12, with Culvert 1 at 30 m and
Culvert 2 at 90 m from stream crossing delivers the least sediment.

Culvert 1

location

Culvert 2

location

Sediment

Delivered

Sediment

Reduction
Config.

No.
(m) (m) (kg / yr) (%)

0 60 - 2661 0

1 70 100 1471 45

2 70 110 1497 44

3 60 100 1284 52

4 60 110 1349 49

5 60 90 1290 51

6 50 100 1217 54

7 50 90 1227 54

8 40 100 1125 58

9 40 90 1140 57

10 40 80 1219 54

11 30 100 1165 56

12 30 90 1112 58

13 30 80 1132 57

Full optimization of cross drain systems becomes more complex with the addition of each

new culvert but the importance of the cut-off culverts closest to the stream crossing

cannot be overstated. In reality, departures from the simple triangular geometry assumed

here, further complicates this analysis. As road alignments and stream paths curve and

25

weave randomly, the road’s proximity to the stream and implicitly the side slope’s

filtering potential become more difficult to model analytically (Figure 11). The flow path

of the water dispersed by the cross drain follows the local micro-topography and can be

significantly different from the straight line distance between culvert and valley bottom.

Moreover sediment generating factors, vegetation and filtering characteristics vary along

the road alignment and side slope respectively adding further complexity to sediment

delivery modeling.

Stream
Culvert

Road

Figure 11: Example of a real case road layout with culverts

In addition to their stream crossings areas, roads are also susceptible to sediment delivery

in all cases where they run parallel, in close proximity to streams (e.g. valley bottom

roads). Whenever the volume of sediment diverted onto the side slope exceeds the local

filtering potential, sediment delivery will occur. The process of finding best culvert

26

locations in these situations follows similar analysis principles with the evident omission

of the direct delivery from ditch component.

27

Computer Modeling of Cross Drain Systems

Culvert Location Analysis for Design Purposes

Optimizing cross drain culvert spacing takes into account a composite sum of factors

including terrain information, road layout, and existing culvert locations making it

difficult to be performed by hand. As automated optimization software packages do not

currently exist designers are limited to using various sediment analysis programs in order

to estimate the validity of their design. The investigation of best cut-off culvert location

using such analysis packages can become cumbersome and time consuming for longer

roads with multiple stream crossings laid across non-uniform terrain. For example

applying WEPP:Road for a such project requires division of the road network into

segments of uniform characteristics. A culvert placed on one of these segments further

divides the segment into two parts: upstream and downstream from it, each necessitating

a separate run of the model. The forested lateral buffer distance at the current culvert

location has to be determined. The simulation is run for each segment and the total

sediment delivered to stream is computed. If one or more culverts are relocated new

divisions of the original road segments and measurements of the associated buffer length

are necessary. WEPP:Road is run over the Internet. Simulating sedimentation over short

periods of time is a relatively quick process taking approximately 1-2 seconds per road

segment. However the program can only work with one segment at a time. The manual

updating of culvert positions and dynamic segmentation of the road segments are very

inefficient and represent major drawbacks of this approach. Furthermore, treating road

segments as stand alone entities excludes any interaction from neighboring segments.

Ditch water cannot be easily carried along different segments as encountered in reality.

The complexity of such analysis restricts its usage mostly to research projects. The lack

of an appropriate, easy to use, culvert location analysis tool deters professional road

designers and engineers from widely devising cross drain systems for sediment reduction

purposes (Schiess, personal communication).

28

Interactive Culvert Placement

From the perspective of cross drain culvert design, an ideal design tool would evaluate

each design step as it is proposed such that a user could easily tell the effect of his/hers

decision and improve upon it. The term interactive culvert placement is used here to

designate the process of designing cross drain systems by placing culverts at various

locations with the immediate support of a sediment modeler to evaluate potential impacts

to the nearby streams. Decision support tools that instantly quantify proposed alternatives

typically assist this kind of interactive design. Figure 12 depicts the workflow of a cross

drain design process using both an analysis package and a decision support tool.

NO

Run Model

Place Culvert

Start

Stop

NO

YES

YES

Run Model

Place Culvert

NO

Start

Stop

YES

NO

YES

Run Model

Place Culvert

Evaluate System

Less Sediment?

Start

Stop

More Culverts?

Less Sediment?

Evaluate Culvert

Run Model

Place Culvert

Start

Stop

More Culverts?

Figure 12: Flow chart of cross drain design workflow; analysis tool (left), decision support tool
(right).

29

The major difference between the two cases is given by the feedback the user receives

during design, as a validation of a placement decision. This feedback is essential to

producing a good solution as users can quickly improve upon each proposed step and get

closer to an optimum cross drain setup.

CULSED- A Decision Support Tool for Cross Drain System Design

To facilitate the investigation of sedimentation reduction from insloped forest roads in

realistic road design circumstances, a specialized computer program named “Culvert

Locator for Sediment Reduction” (CULSED), was developed. The program is a GIS

based decision support tool focused on assisting engineers during cross drain system

design. Its primary function is to assess the sediment delivery at each culvert location and

graphically display it on the computer screen such as users can immediately ascertain the

validity of a design decision. Using this program it is possible to identify near-optimal

cross drain locations by exploring various permutations along the road alignment.

CULSED gives users the ability to add, move and remove cross-drain culverts,

dynamically evaluating the total sediment impact to the stream network from the

analyzed road system. Culverts can be represented with graduated symbols proportional

to their sediment delivery (Figure 13). The question of minimizing sediment delivery is

thus transposed to a question of minimizing symbols on screen. The total sediment

delivered by the road is displayed at all times during the analysis stages and changes with

every modification performed to the cross drain system. The program has no automated

procedures for achieving absolute minimization of total delivery but provides the users

with the means to compare culvert locations and identify good solutions.

CULSED is implemented as an ArcGIS extension that seamlessly integrates with the

standard ArcGIS package being able to access all the existing functionality and providing

a familiar interface and ease of use. Running CULSED requires at the minimum a GIS

road layer, a stream layer, and a digital elevation model. Additional information such as:

30

road surface, road age, road grade, soil and parent material and side slope vegetation

cover may also be used during the sediment modeling stages. Appendix A contains a

more detailed explanation of this software’s capabilities.

Figure 13: Sediment delivery represented as proportional symbols; a minimum size symbol
represents 0 sediment delivery; arrows indicate the direction the sediment flows along the road
alignment (ditch).

Modeling Cross Drain Systems with CULSED

The implementation of CULSED follows the well known Model-View-Controller

paradigm. The various modules composing this architecture actively interact with each

other at run time to compute and display the sediment impact related to each user action

of adding, removing or moving culverts (Figure 14).

31

ArcMap GUI

Road Ditch
 Model

Sediment
 Production

 Model

Side Slope
 Filtering

Model

Controller View

Figure 14: CULSED Model-View-Controller internal architecture; dotted lines represents implicit
information flow provided by the ArcMap interface; solid lines represent explicit information
exchange between CULSED’s modules.

The controller module’s role is to provide user input to various operations related to the

culvert analysis. It essentially drives the activities of other modules that require user

interaction such as: generation of network topology, cross drain movement and

description of sediment producing factors. The controller module is a part of the ArcMap

user interface on which CULSED is developed.

The view module is also part of this interface and is represented by the standard ArcMap

graphical output. It is at this level where the results are presented to the user for

evaluation and decision support. This module receives information from the ditch model,

dynamically rendering all changes made by the end user.

At the core of CULSED is a suite of three modeler modules: the Road Ditch Model,

Sediment Production Model and Side Slope Filtering Model. The Road Ditch Model is a

32

simplified representation of the road’s drain ditch, modeling the flow of water along it.

This module makes the following assumptions:

All roads are insloped

There is continuous ditch along every road segment in the network

Water flows along the ditch and spills out only at culverts and ditch ends

All culverts are functioning within designed parameters

There are no intersections of more than 4 roads

The road ditch is described by the interplay of a geometric network and its associated

logical network. The geometric network stores the physical location and geometry of the

roads alignments, stream crossings and cross drain culverts together with their geometric

connectivity. These network components are the elements that the end user sees and

interacts with on the computer screen.

The logical network portrays the sediment flow within the system, storing the

directionality of water movement. It is conceptually similar to a generic graph, being

composed of interconnected edges and nodes. There is a direct correspondence between

the elements of the logical network and the geometric network. An edge is associated

here to a one dimensional stretch of road of uniform sediment producing characteristics.

Edges are sources of the sediment that flows along them. A node is the abstract

representation of a connection point between edges. Culverts are always node points and

play the role of sinks within this architecture. Sinks capture all physical flow routed to

them. From a topological perspective each edge can be characterized by parents, children,

sinks and a flow direction (Figure 15). A parent is a connected ditch segment located

directly upstream on the flow path, routing its sediment-laden water into the current

segment. For implementation reasons the maximum number of parents is restricted to 4.

Similarly a child is a connected ditch segment downstream along the flow path, receiving

sediment-laden water from the current segment. Because in reality ditch water is never

split onto multiple roads at intersections, the model only allows one child per segment.

33

The presence of a sink at the end of an edge implies no children connectivity as in reality

a cross drain intercepts and re-routs all the water it captures.

Parent
Edge Parent

Edge

Child
Edge

Sink
Node

Figure 15: Logical network of the ditch model

The Sediment Production Module used by CULSED follows the methodology outlined in

the Washington Department of Natural Resources Standard Method for Conducting

Watershed Analysis to compute the amount of sediment generated by the road prism

(Appendix A). However, in order to provide the means for other user-implemented

sediment modelers to be used with the program, this module was developed on top of a

generic sediment production framework. The framework enforces a certain common

functionality needed by various methodologies to work together with the other program

components (Appendix B). Its main function is to calculate the sediment produced by the

road prism on a segment by segment basis according to their specific sediment producing

parameters. These parameters have to be associated to each road segment prior to running

the analysis by the end-users unless default parameters are used.

34

The third module in the modeler suite, the side slope filtering module, determines the

sediment filtering potential associated with each potential culvert location in road the

network. It is based on the work of Ketcheson and Megahan of USDA Forest Service

describing the sediment deposition on a vegetated side slope as a function of proximity to

streams (Ketcheson and Megahan 1996). The module computes the proportion of

sediment that can reach the stream at any given distance along a vegetated side slope

(Equation 3). The proximity to the stream is based on the physical flow path distance

from the culvert to the nearest stream generated from a digital elevation model.

The sediment delivered by each culvert is calculated in response to various user triggered

events as the sum of the sediment produced by all contributing road segments multiplied

by the filtering potential at that particular location (Equation 4).
contrib

SedlocationFSedDel
0

)(

Equation 4 Sediment delivered from each culvert. F= filtering potential

The total sediment delivered by the entire road drainage system is thus given by sum of

all contributing culverts (Equation 5).
culverts contribculverts

SedlocationFSedDelTotalSed
0 00

)(

Equation 5 Total sediment delivered by road

35

Results of a Cross Drain Redesign Application

In order to proof the concept of the cut-off culvert and demonstrate its applicability in a

real world case scenario, several road settings were examined within the context of a

forest harvest plan. The goal of these experiments was to reduce the total sedimentation

from an existing road network by redesigning its cross drain system to make better use of

sediment dispersion and filtering potential on vegetated side slopes. As the cost of the

resulting drainage system had not to exceed the original cost, the total number of cross

drains could not be increased. CULSED was used to compute the amount of sediment

delivered by the entire road network at each design alternative during the design process.

North Tahoma Planning Area

The North Tahoma State Forest is an area of approximately 25,000 acres of forested

terrain on steep topography, with a well developed road network. It is located along the

Nisqually River, near Ashford WA, contained within T15N, R6E and T14N, R6E. This

site was chosen for our cross drain design experiment due to its fragmented terrain with

many streams and road-stream crossings. A sufficient amount of site descriptive

information was available. Digital datasets of existing cross drains, roads and high

resolution digital elevation models were obtained from WA DNR. We focused our study

on Reese Creek Watershed, a central part of the North Tahoma State Forest (Figure 16).

The existing road network in our study area was approximately 42 miles long with 76

stream crossings. The road grade varied between 1 and 19% with an average of 6%. The

majority of roads were the typical one lane forest road, 12 ft. width, surfaced with gravel

and maintained in good condition. As the roads were relatively old, the side slopes were

mostly re-vegetated. A cross drain system was already in place and contained 168

culverts placed according to the standard WA DNR regulation. The relatively large size

of our study area and its high number of existing cross drains severely limited the user

interaction with the dataset on the computer screen. Therefore the site was divided it into

two smaller, more manageable parts, based on the local topography and road structure.

36

These roughly equal subdivisions were named the East and West North Tahoma

respectively.

Figure 16: Shaded relief model of the North Tahoma planning area; green dots represent the original
cross drain locations

Original Sediment Delivery

The North Tahoma road network within our planning area was built approximately 10 –

40 years ago. Some roads were converted from older railroad grades. Its original cross

drain system had been designed to meet the specifications of the time and only minor

parts had later been upgraded to current standards. Upon examination it could be

observed that the cross drains had been spaced at relatively uniform intervals along the

road alignments, a common practice among road engineering professionals (Figure 16).

Some cross drain locations had been dictated by the terrain features, as roads went across

natural wet spots, draws, swells or other formations that could lead to water saturation of

the road prism and cause potential road damage. They were identified and labeled

appropriately for the purpose of our analysis (Figure 17). The other cross drains had been

37

placed according to designer’s best judgment and experience in order to reduce ditch

erosion and maintain flow capacity.

All existing culvert locations were used as a starting point in our sedimentation analysis.

Based on local site conditions CULSED produced an associated amount of sediment for

both the East and West halves of our planning area. Figure 17 and Figure 18 show maps

of the sediment delivery potential in this standard configuration, represented with

proportional symbols. The total sediment delivery given by the original cross drain

configuration summed up to 67.11 tons/year. This number was computed by an empirical

sediment model based on the Washington DNR Manual for Conducting Watershed

Analysis. Although the accuracy of this model may be debatable, it provided us with a

basis for culvert location comparisons as a relative scale to measure sediment reduction.

38

Figure 17: Initial sedimentation from East North Tahoma road network – 42.10 tons/yr; blue dots
represent stream crossings; red dots represent cross drains at natural draws and wet spots; green
dots represent other cross drains; red arrows indicate direction of sediment flow along roadside
ditch; yellow circles are proportional to the sediment delivered at location

39

Figure 18: Initial sedimentation from West North Tahoma road network – 25.18 tons/yr; blue dots
represent stream crossings; green dots represent cross drains; red arrows indicate direction of
sediment flow along roadside ditch; yellow circles are proportional to the sediment delivered at
location; dashed bounding box represents a subset example.

40

Design Process Example

To illustrate the steps taken during the investigation of a near optimal location for a cross

drain culvert, a single stretch of road was analyzed in greater detail. The sample road

segment, a part of the North Tahoma network, was chosen for its relatively simple set-up

(Figure 18). Starting with the original culvert configuration, a cross drain was relocated

progressively towards the stream crossing in five iterations. Sedimentation was

graphically displayed with proportional symbols making the effects of each of these

possible culvert configurations readily apparent. The goal of the road designer using

CULSED was to minimize the sum of sediment delivered by all culverts involved in this

operation, expressed in this case by the area of the yellow circles. Figure 19 presents the

five design iterations completed in this case. The examination of sediment delivery

potential at each of the five steps revealed a minimum at the third iteration with cut-off

culvert placed 108 ft away from the stream crossing. This is reflected in the relative size

of the graphic symbols associated with the cross drains.

41

1.04

0.51

0.24

0.19

0.11
0.49

1.05

0.05

Original setup

Alternative 1

Alternative 2

Alternative 3

Alternative 4

Alternative 5

0
33

78
108

135 289 570 1100
feet of road

Figure 19: Composite map of a culvert placement investigation process; the circle symbols indicate
the volume of sediment delivered; lowest sedimentation is obtained at alternative 3.

42

Sediment Reduction by Cross Drain System Redesign

By applying methods similar to the one described in the “Design Process Examples”, a

number of culverts were relocated to key locations in order to achieve sediment reduction

for the entire North Tahoma project area. The culverts originally designed for reasons of

prism health, identified and marked in the earlier steps of our design exercise, were

considered “unmovable” and kept unchanged. The process of redesigning the cross drain

system was attempted in stages, for both the East and West subsets of our area.

The original culvert configuration for the East half of North Tahoma consisted of 39

stream crossings, 22 unmovable drainage culverts and 64 cut-off culverts. This

configuration yielded a total of 42.10 tons/year of sediment to the stream network. Acting

gradually upon the greatest sediment contributors, relocating the cut-off culverts involved

at each of these road settings, we were able to achieve a substantial reduction in sediment

delivery. After repositioning approximately 35 cut-off culverts, the total sedimentation of

the East area was reduced to 10.04 tons/year, a 76 % percent drop from the original

delivery. Figure 20 displays a graphic representation of the final sedimentation.

Comparing the relative size of the proportional symbols with the original configuration

(Figure 17) the sediment reduction becomes obvious.

An analogous design process was conducted for the West part of North Tahoma. The

original cross drain system containing 28 stream crossings, 27 drainage culverts and 55

cut-off cross drains, was potentially delivering 25.01 tons of sediment / year. Redesigning

this system involved relocation of approximately 20 cross drains. The final sediment

delivery was dropped to 6.33 tons/ year, achieving a 74 % reduction from the initial

amount (Figure 21). The graphic quantification of this improvement can be easily noticed

when contrasted with the original setup (Figure 18). The total improvement for the entire

North Tahoma planning area can thus be quantified at approximately 75 % decrease in

sedimentation. A number of 55 cross drains have been moved to new locations. No new

culverts have been introduced in the system.

43

Figure 20: Sediment delivery from East North Tahoma road network after redesigning the cross
drain system – 10.04 tons/ year. Yellow circles are proportional with sedimentation at the respective
location; 75% sedimentation reduction from the original design.

44

Figure 21: Sediment delivery from West North Tahoma road network after redesigning the cross
drain system – 6.33 tons/yr. Yellow circles are proportional to the sediment delivered at the
respective locations; 74% sedimentation reduction from the original design.

45

The average distance from the first cut-off culvert to the stream crossing at the end of the

design process was 140 ft. A minimum of 55, maximum of 289 and a standard deviation

of 59 ft were recorded. These results contrast with the Forest Practices Board

recommendation of placing the first culvert within 50 – 100 ft of a stream crossing. The

wider range of values produced by CULSED stems from the variability of local

conditions: sediment producing factors and delivery potential, characteristic to each road

location. The interplay of the direct delivery from ditch and overland delivery from cross

drain is what determines the amount of sediment reaching the streams in the near vicinity

of a stream crossing. Although general guidelines can be successfully applied in certain

average situations, cross-drain location design is best approached on individual bases.

One important aspect to mention is the scope of the analysis carried above. Given that an

absolute optimal location is impractical to obtain through experimentation (especially

when dealing with a high number of culverts over a large area) a three quarter reduction

of sedimentation was considered satisfactory. Further culvert manipulation could lower

sedimentation even more but major improvements should not be expected.

Weaknesses and Shortcomings

The most important location for a cut-off culvert is within 100 – 200 ft uphill from a

stream crossing, while other locations on the road alignment can have little to no effect

on sedimentation. This is especially true on mid-slope roads situated far enough from a

stream valley to benefit from full sediment dispersion and filtering on vegetated side

slopes. In these conditions, designing a culvert system strictly for the purpose of sediment

reduction could lead to an oversimplified drainage configuration. There is a tendency to

keep the number of culverts to a minimum as they are neutral to sediment delivery.

However, by spacing cross drains too coarsely, long stretches of road are left exposed to

ditch scouring and infiltration of ditch water into the road structure. This may impact the

maintenance costs and potentially cause road failure as the prism and/or subgrade reach

46

the saturation point. The road engineer’s experience is crucial for the outcome of such a

design project.

The benefits of the cut-off culvert are more apparent in regions with steep, fragmented

topography, where higher amounts of sediment are produced and transported. Flat areas

with low grade roads and few stream crossings do not gain from a complex culvert

analysis. Furthermore, modeling flow patterns in these flat areas presents a challenge for

the current GIS algorithms, yielding unreliable results.

A particular GIS problem affecting CULSED analysis is the modeling of the flow-path

and generation of streams from a digital elevation model. The raster resolution strongly

impacts the outcome of this analysis. The cell spacing determines the minimum

increment of the flow path distance measurement and implicitly influences the number of

valid culvert locations that can be evaluated along a road segment. Analyzing short road

segments with wide cell spacing can render this technique impractical. The standard 10m

and 30m DEM can only be used for smaller scale analysis with a larger tolerance for

error.

Specific issues related to computer modeling of the cut-off culvert concept currently

restrict its wide scale usability. CULSED was designed for insloped roads with a side

ditch. The ditch model assumes ditch continuity along all roads segments. A road

network containing road types where the side ditch may not be present would be

misinterpreted as its sediment flows would erroneously be simulated.

Sediment production and delivery potential associated with each culvert are computed

with empirical models derived for particular conditions in the Northwest of the United

States (WA Forest Practices Board 1997, Ketchesson and Megahan 1996). These models

were meant to operate on relatively large scales and adjust poorly to the micromanaging

imposed by a culvert by culvert analysis. Their absolute results may not always reflect

the reality of all case scenarios met in road design. Overestimation of sediment

47

production seemed characteristic for the North Tahoma planning area. Nevertheless, as

culvert locations are evaluated on a relative scale, these figures can serve as a basis for

comparison and decision support.

48

Discussion

Importance of Better Models

One major component of cut-off culvert modeling is the flow of surface water from

precipitation. Accumulation, canalization and dispersion of this water drive processes of

erosion, sediment transport, deposition and infiltration into the stream networks. Cut-off

culverts together with the road ditch are directly involved in the local hydrology as man-

made structures that reroute water away from its original pathways. To identify and

estimate localized stream sedimentation from roads, a successful model has to be able to

track the flow direction across the terrain. Flow direction constitutes the starting point of

such an analysis, a foundation on which sediment can be associated with relevant

locations within the study boundaries. Only after the determining the flow direction can

the sediment quantification be performed. Culverts would then be spaced according to

their associated amount of sediment. This level of functionality is supported by

CULSED, a decision support tool for cross drain design introduced above. An important

enhancement to be made to this approach is to evaluate the actual amount of water

traveling along the road’s side ditch. By knowing how much water is accumulating at any

point on a road alignment, ditch scouring processes could be modeled. Cross drain

spacing could therefore take into account scouring in order to avoid problems related to

long, unprotected road segments. Moreover, the estimated amount of water flowing

through a particular location could serve as a parameter for dimensioning culvert pipes.

By examining an actual road set-up, existing culverts susceptible to overflow could also

be identified and marked for a potential redesign.

Another aspect of the current method that could benefit from improvements is the

modeling of the sediment delivery process from a cross drain to the nearest stream. A

deterministic model of water infiltration through the forest soil has the potential to

increase the accuracy of our sediment filtering prediction. Coupled with the average

magnitude of water flows outwards from a specific culvert, such a model would quantify

49

sediment deposition over distance to stream. Local terrain conditions influencing this

process could serve as inputs. This model would be easily incorporated into the present

GIS based analysis routines which best represent spatially distributed phenomena on a

fixed point in time.

A common occurrence in GIS environmental analysis also employed by CULSED is the

use of raster elevation models (DEM) to describe terrain features. They are in essence a

discrete pixel representation of the ground topography. In terms of pixel resolution and

generating method, various DEM standards exist but their ability to capture topographic

details varies. When performing a detailed analysis as required by cross-drain modeling,

the topographic expression is critical to the accuracy of the results. Natural terrain

features such as small stream valleys, draws, swells and other low spots influence local

hydrology, road layout and implicitly sedimentation. More particularly, in a computer

environment they affect the modeling of the flow path, at the base of the cross drain

design process. Recently, high resolution DEM, a new standard in terrain modeling have

been introduced. Their ability to reveal a lot of the micro-topography makes them

suitable for cross drain analysis. The North Tahoma Redesign Project has been carried

out on a 6 ft high resolution DEM. A shaded relief of this model clearly illustrates the

micro-topographical detail included in that analysis (Figure 22). Although new, this kind

of data is rapidly becoming available at lower costs. Organizations such as Puget Sound

LIDAR Consortium are developing datasets of large extents. As this technology matures

and turns more accessible, the usability of tools like CULSED will increase.

50

Figure 22: Topographic detail of North Tahoma, 6ft resolution DEM

As with most other computer-modeling of natural phenomena, cross drain modeling

needs to be validated by field verifications. Since the local conditions at various culvert

locations could be complex, input parameters to the model could be erroneous or only

partially descriptive. Therefore field inspections are required in order to asses both the

validity of the input factors and final outcomes at project completion. The North Tahoma

Project has benefited from input validation performed by University of Washington forest

engineering students, class of 2003. However, as this project was investigational and will

not be implemented in its current form, no further attempts of validation have been made.

A future expansion of this project might take into consideration field visits and/or a

monitoring program to culvert sites in the event of a possible commission.

51

List of References

Burroughs E R, King J G. 1989. Reduction of soil erosion on forest roads. U.S.
Department of Agriculture, Forest Service, Intermountain Research Station.

Elliot, W J, Hall D E, Graves, S R, Scheele, D L. 1999a. The X-DRAIN Cross Drain
Spacing and Sediment Yield Program Version 2.00. U.S. Department of
Agriculture, Forest Service, Rocky Mountain Research Station, San Dimas
Technology and Development Center.

Elliot, W J, Hall, D E, Scheele, D L. 1999b. Forest Service Interfaces for the Water
Erosion Prediction Project Computer Model. U.S. Department of Agriculture,
Forest Service, Rocky Mountain Research Station, San Dimas Technology and
Development Center.

Elliot W J, Hall D E, Scheele D L. 1999c. WEPP Interface for Predicting Forest Road
Runoff, Erosion and Sediment Delivery. U.S. Department of Agriculture, Forest
Service, Rocky Mountain Research Station, San Dimas Technology and
Development Center.

Ketcheson G L, Megahan W F. 1996. Sediment Production and Downslope Sediment
Transport from Forest Roads in Granitic Watersheds. U.S. Department of
Agriculture, Forest Service, Intermountain Research Station.

National Center for Air and Stream Improvement. 2002. Technical Documentation for
SEDMODL version 2.

Reid L M, Dunne T. 1984. Sediment Production from Forest Road Surfaces. Water
Resources Research 20(11).

Schiess P, Whitaker CA. 1986. Road Design and Construction in Sensitive Watersheds.
Food and Agriculture Organization of the United Nations, Rome, Italy.

Washington Forest Practices Boards. 1997. Standard Methodology for Conducting
Watershed Analysis Manual, version 4. WA Department of Natural Resources.

52

Washington Forest Practices Board. 2000. Forest Practices Board Manual, Section 3. WA
Department of Natural Resources.

Watershed GeoDynamics, Megahan W F, Terra GIS Solutions. 2003. Washington Road
Surface Erosion Model. WA Department of Natural Resources.

53

Appendix A – CULSED Software Manual

Program Requirements

CULSED has been developed and tested for ArcMap version 8.2 on the Windows 2000
platform. The application has not been tested on any subsequent versions of the ESRI
software.

Installation

CULSED is comprised of two ArcMap extensions currently named

RoadSedimentAnalyst and RSASedimentModel. Upon successful installation they will

show up in the tools/extensions menu item of ArcMap. A dedicated toolbar provided with

the program will also be found in the ArcMap list of tools.

Installation steps:

Download the RoadSedimentAnalyst.dll and RSASedimentModel.dll to a

permanent directory on your computer.

Use the regsvr32 application generally found at \WINNT\system32\regsvr32.exe

to register these dll libraries with the operating system. You can do that by

dragging the libraries onto a regsvr32 icon on your desktop.

Run the ESRI program called Component Category Manager. It can be found in

\arcgis\arcexe82\Bin\categories.exe. A screen capture of this program is seen in

Figure 23.

Highlight ESRI MX Extensions. Click “Add Object” and select the

RSASedimentModel.dll from the directory where you downloaded it and click

“OPEN”. Select RSASedimentModel and click “OK”. This will register the

RSASedimentModel extension with ArcMap.

Similarly to step 4, register clsExt from RoadSedimentAnalyst.dll with ESRI MX

Extension. Do not register any other objects here.

54

Under ESRI MX CommandBars category in the Component Category Manager

register clsMenu and clsToolBar from the RoadSedimentAnalyst.dll. Do not

register any other objects here.

Register all remaining objects (except clsExt, clsMenu and clsToolBar) from

RoadSedimentAnalyst.dll with the ESRI MX Commands category.

Start ArcMap and verify that the two extensions were added and the CULSED

toolbar is available. If so you are ready to use the program.

Figure 23: The Component Category Manager Application for registering CULSED components

Data Requirements

The CULSED analysis requires the following datasets:
A hydro compensated digital elevation model. This dataset must be free of sinks
and be able to derive a stream layer with the minimum contributing area method.
A stream layer of linear features that must align with the digital elevation model.
Optimally this stream layer should be generated from the DEM.

55

A culvert point layer that could contain existing culvert locations. If there are no
existing location the layer is still required and should be empty.
A road layer of linear feature. The road segments should be representative of the
changes in sediment producing factors (i.e. grade, width, surface material, etc.)
which are given as attributes. The valid values of these attributes are given in the
options menu (see below).

Software Tutorial

This section presents the tools and menu items present on the CULSED toolbar (Figure

24).

The CULSED toolbar is composed of 9 tools and 6 menu items that operate on the

existing data and control the flow of the culvert analysis session. A small window on the

toolbar presents the total amount of sediment delivered by the analyzed road network at

each step during analysis. The sediment volume is expressed in tons / year.

All CULSED operations must be performed within an analysis session. The session steps

must be performed in order. If the session is not completed in one sitting the user can

leave it open in order to be stored with the ArcMap project. When the session is stopped

all progress is cleared and all internal variables reinitialized.

Note: the Spatial Analyst extension must be installed for CULSED to function properly.

Figure 24: The CULSED toolbar

56

Start

This item starts an analysis session. The user is prompted to provide the needed analysis

layers (Figure 25).

Figure 25: Start menu item

CULSED requires the following layers: a digital elevation model, a roads layer, a culvert

point layer and a stream layer.

Notes: for best results the digital elevation model must be free of sinks and the stream

layer must align with it. One convenient method for generating streams from a digital

elevation model is the minimum contributing area method.

Road SetUp

This menu item runs a series of algorithms that setup the road network from a geometric

perspective. A road grade in percent is estimate and stored in the road attribute table

(Figure 26).

57

Figure 26: Set up road grade menu.

CULSED assumes that each road segment presents a consistent combination of sediment

production factors (e.g. road grade, road width, surface material etc). At this stage in the

analysis the user must examine the road segments and ensure that this condition is met.

Because the road grade is estimated from a digital elevation model it may not necessarily

reflect the actual road reality. CULSED provides tools for splitting and merging road

segments, changing flow direction and modifying grade.

Note: to properly estimate the road grade the vertical units of the DEM must be the same

with the horizontal units. If they differ the user must correct the grade values in the

attribute table appropriately.

This tool changes the grade of a road segment. Click on a segment to display grade. Type

a new value and right click to commit the change.

This tool simultaneously changes the grade of all road segments at a certain intersection.

Left click to increase grade. Right click to decrease grade.

58

This tool changes the flow direction along a road segment. The flow direction along the

side ditch is represented with arrows. Use this tool when the DEM estimated grade is

incorrect.

This tool splits a road segment in two parts. All attributes are copied onto the newly

created segments.

This tool merges two road segments into one. The road grade is taken from one of the

segments. When more than two segments meet at an intersection click the intersection

with the left button and while keeping the button depressed press the right button to select

which segments will get merged.

This command enforces geometric consistency, eliminating duplicate segments and

forcing node connectivity (simplifies geometries) to ensure proper topology. Make sure

to use this command when you are done with all edits and are ready to proceed to next

step.

Flow SetUp

This menu items runs a series of algorithms that construct the internal logical network

and establish the how water flows along the side ditch. The road segments are identified

as parents and children based on their physical connectivity. All existing culverts are

snapped to the road lines and new culverts are placed at stream crossings.

In certain cases, the network topology algorithms cannot automatically identify the

parent-child relationships needed for modeling the water travel. A list of these cases is

59

presented to the user during flow set-up. The user must click on each item on this list and

using the ArcMap selection tool direct the water on its way to the next ditch segment

(Figure 27).

Figure 27: Set up road intersections with more than one water routing choice.

Analyze Sed

This menu item runs the sediment modeling algorithms that associate a sediment

production to each road segment and determine the flow path distance from each

potential culvert location to the nearest stream. This module works in conjunction with

the spatial analyst extension to perform raster calculations and attribute modifications.

The sediment model is implemented as a separate extension in order to provide

interchangeability at run time. The options menu specifies which available sediment

model is currently used.

The default sediment model provided with this version of CULSED follows the

procedures in the WA DNR Manual for Conducting Watershed Analysis. The following

sediment production parameters can be specified as road attributes and are associated to

each segment: age, grade, width, surface material traffic and side slope cover. Other

parameters such as precipitation and parent material are considered uniform over the

entire study area (Figure 28). If no attributes fields are specified, a set of default road

characteristics are applied. The can be viewed and modified in the option menu.

60

Figure 28: Sediment modeling parameters

A minimum number of contributing cells is required for computing the flow paths to the

nearest streams. A raster layer of streams is generated during this process. For accurate

results this number should produce a stream layer identical to the one used in the input

section.

The flow modeling section is useful when working with high resolution elevation models.

A typical problem when modeling water flow in these cases is the stream capture by the

road ditch. To reduce the stream capturing effects the elevation models can be smoothed

with a circular neighborhood of given radius.

61

The maximum sediment travel distance represents is a generic number that influences the

sediment deposition factor used for calculating a probability of sediment delivery. This

number is particular to local conditions and should be based on empirical observations at

the site. The user’s expertise is important for obtaining valid results.

Culvert Operation Tools

A set of tools that allow insertion, relocation and removal of cross drain culverts is

provided. These tools only become available after the sediment analysis has been

performed. Operating any of these tools triggers recalculations of sediment delivery

probability and summation of total sediment delivered by the road network. These

changes are reflected in the sediment window.

This tool inserts a new cross drain in the road drainage system.

This tool moves a cross drain culvert to a different location.

This tool removes a cross drain from the road drainage system.

Stop

Stop an analysis session and clears all variable. Use only when a session is completed.

Options

The options menu presents specifies the sediment model to be used and give the default

road characteristics for sediment production calculations.

62

A new ArcMap extension must be developed in order to use a different sediment model.

This extension must be written in Visual Basic and must implement the ISedimentModel

interface provided with the CULSED code (Appendix B). This interface specifies the

methods necessary for CULSED to be able to integrate with a sediment model.

Figure 29: Option menu. Default Sediment Model (left), Default Road (right).

Workflow Example

Following the steps in the program’s main menu (see above) in the order they are given

guides the user through a CULSED session. The following images are screen capture of a

typical CULSED session.

After inputting the required layers at the start menu the user must proceed to set up the

road geometry (if needed) by estimating and adjusting grades and inspecting road

attributes that drive sediment production (Figure 30). At this stage it is helpful to display

the road grade associated to each segment.

The next step is to generate the road network topology. The user may be asked for

sediment routing information in cases where two or more possible flow paths exist. Upon

successful completion the road network is ready to be analyzed for sedimentation (Figure

31).

63

Special note regarding switchbacks:

CULSED does not automatically account for the “ditch-out” normally present at switch

back. To prevent the program from carrying the water onto around the switchback the

user must represent the ditch-out by placing a cross-drain at the center of the switchback.

This cross drain is generic and can be flagged in the attribute table for later identification.

Once the sediment analysis has been run, an amount of sediment delivered will be

associated to each existing culvert.

Figure 30: Road Geometry Setup has been run. A road grade is computed. The user splits segments
and changes all incorrect grades appropriately.

To take advantage of the intended graphic comparison the used must draw culverts with

proportional symbols based on the field called “SED” in the culvert layer’s attribute

64

table. If these values are spread over a wide range it is helpful to “stratify” the analysis

and start by representing only the big contributors. As sedimentation is reduced by

moving culverts to different locations culverts in the lower sediment ranges can also be

included (Figure 32). Most of the sedimentation will be located near the stream crossings

and it is these locations where users can make the greatest improvements to their drainage

systems.

Figure 31: Flow Setup and Sediment Analysis have been run. The existing culverts are snapped to
roads, culverts are automatically placed at stream crossings and a volume of sediment delivered is
associated with each culvert. The user places cross drains to reduce sedimentation.

65

Figure 32: Culverts have been moved to near optimal locations. Sedimentation is reduced.

66

Appendix B – CULSED Visual Basic Computer Code

Common Implemetation Interface Code

INTERFACE – ISedimentModel (ISedimentModel.cls)

Option Explicit
'Standard interface ISedimentModel is meant to provide common
functionality
'across diferent implementations of sediment modelers
'The Culvert Sediment Analyst makes calls to all methods here at a
different times
'during the setup/design process

Public Function GetDeliveryPotential(pQueryPoint As IPoint) As Double
 'your implementation here
End Function

Public Function GetSedimentProduction(pRoadSegment As IFeature) As
Double
 'your implementation here
End Function

Public Function RunRasterAnalysis(pRoadClass As IFeatureClass,
pElevationModel As IRaster) As Boolean
 'your implementation here
End Function

Public Sub StopSession()
 'your implementation here
End Sub

Public Property Get DistanceToStream() As IRasterLayer

End Property

Public Property Let DistanceToStream(ByVal vNewValue As IRasterLayer)

End Property

Public Property Get MaxDeliveryDistance() As Integer

End Property

Public Property Let MaxDeliveryDistance(ByVal vNewValue As Integer)

End Property

Public Property Let DefaultRoadAge(ByVal vNewValue As Integer)

End Property

Public Property Let DefaultSlopeCover(ByVal vNewValue As Integer)

End Property

67

Public Property Let DefaultRoadWidth(ByVal vNewValue As Integer)

End Property

Public Property Let DefaultRoadGrade(ByVal vNewValue As Integer)

End Property

Public Property Let DefaultRoadSurface(ByVal vNewValue As String)

End Property

Public Property Let DefaultRoadTraffic(ByVal vNewValue As String)

End Property

Default Sediment Model Code

FORM – frmSedModelParam (frmSedModelParam.frm)

Private iWIndex As Integer
Private m_pFClass As IFeatureClass
Private m_bCanceled As Boolean

Private Sub cmdBack_Click()
 If iWIndex > 0 Then
 iWIndex = iWIndex - 1
 lsbWanted.ListIndex = iWIndex
 cmdNext.Enabled = True
 Else
 cmdBack.Enabled = False
 End If
 If StrComp(lsbChoices.List(iWIndex), "") Then
 Toggle cmdOut, cmdIn
 Else
 Toggle cmdIn, cmdOut
 End If
End Sub

Private Sub cmdCancel_Click()
 m_bCanceled = True
 Me.Hide
End Sub

Private Sub cmdIn_Click()
 AddToChoices
End Sub

Private Sub cmdNext_Click()
 'advance the list index by one
 If iWIndex < lsbWanted.ListCount - 1 Then
 iWIndex = iWIndex + 1
 lsbWanted.ListIndex = iWIndex

68

 cmdBack.Enabled = True
 Else
 cmdNext.Enabled = False
 End If
 If StrComp(lsbChoices.List(iWIndex), "") Then
 Toggle cmdOut, cmdIn
 Else
 Toggle cmdIn, cmdOut
 End If
End Sub

Private Sub cmdOK_Click()
 'validate field data
 If Not Util.ValidatePosInt(tboMinContrib.Text) Then
 MsgBox "Minimum contributing cells must be positive integer number!"
 tboMinContrib.SetFocus
 Exit Sub
 End If
 If Not Util.ValidatePosInt(tboMaxDist.Text) Then
 MsgBox "Maximum distance must be positive integer number!"
 tboMaxDist.SetFocus
 Exit Sub
 End If

 m_bCanceled = False
 'hide form
 Me.Hide
End Sub

Private Sub cmdOut_Click()
 lsbFields.AddItem lsbChoices.List(lsbWanted.ListIndex)
 'remove element from choices at index in wanted
 lsbChoices.List(lsbWanted.ListIndex) = ""
 'make in but available
 Toggle cmdIn, cmdOut
End Sub

Private Sub chkSmooth_Click()
 If chkSmooth.Value = 1 Then
 tboRadius.Enabled = True
 Else
 tboRadius.Enabled = False
 End If
End Sub

Private Sub Form_Load()

 LoadFields

 lsbWanted.AddItem "Width"
 lsbWanted.AddItem "Grade"
 lsbWanted.AddItem "Use"
 lsbWanted.AddItem "Surf."
 lsbWanted.AddItem "Age"
 lsbWanted.AddItem "Veg."

 lsbChoices.AddItem ""
 lsbChoices.AddItem ""
 lsbChoices.AddItem ""

69

 lsbChoices.AddItem ""
 lsbChoices.AddItem ""
 lsbChoices.AddItem ""
 'select first element on each list
 iWIndex = 0
 lsbWanted.ListIndex = 0
 'make remove btn unavailble
 cmdOut.Enabled = False
 cmdBack.Enabled = False
 chkSmooth.Value = False
 tboRadius.Enabled = False

 cboPrecip.AddItem "< 1200"
 cboPrecip.AddItem "1200 - 3000"
 cboPrecip.AddItem "> 3000"
 cboPrecip.ListIndex = 0

 cboParMat.AddItem "Mica Schist"
 cboParMat.AddItem "Volcanic Ash"
 cboParMat.AddItem "Higly Weathered Sedimentary"
 cboParMat.AddItem "Quartzite"
 cboParMat.AddItem "Course-grained Granite"
 cboParMat.AddItem "Fine-grained Granite"
 cboParMat.AddItem "Moderately Weathered Rock"
 cboParMat.AddItem "Sedimentary Rocks"
 cboParMat.AddItem "Compentent Granite"
 cboParMat.AddItem "Basalt"
 cboParMat.AddItem "Metamorphic Rocks"
 cboParMat.AddItem "Relatively Unweathered Rocks"
 cboParMat.ListIndex = 0

 tboMinContrib.Text = 100
 tboMaxDist.Text = 200
 tboRadius.Text = 3
End Sub
Private Sub Toggle(ButOn As CommandButton, ButOff As CommandButton)
 ButOn.Enabled = True
 ButOff.Enabled = False
End Sub

Private Sub Form_Unload(Cancel As Integer)
 Set m_pFClass = Nothing
End Sub

Private Sub lsbFields_DblClick()
 AddToChoices
End Sub

Private Sub lsbWanted_Click()
 lsbWanted.ListIndex = iWIndex
End Sub

Private Sub AddToChoices()
 If lsbFields.ListIndex >= 0 Then
 'put the selected element into the choices lsb
 lsbChoices.List(lsbWanted.ListIndex) =
lsbFields.List(lsbFields.ListIndex)
 'remove element from lsb fields
 lsbFields.RemoveItem (lsbFields.ListIndex)

70

 'make remove btn available
 Toggle cmdOut, cmdIn
 End If
End Sub

Private Sub LoadFields()
 'load fields
 If Not m_pFClass Is Nothing Then
 Dim pFields As IFields
 Set pFields = m_pFClass.Fields
 Dim i As Integer
 For i = 0 To pFields.FieldCount - 1
 lsbFields.AddItem pFields.Field(i).name
 Next i
 End If
End Sub

Public Sub InitializeData(ByVal pFeatClass As IFeatureClass)
 Set m_pFClass = pFeatClass
End Sub

Public Property Get WasCanceled() As Boolean
 WasCanceled = m_bCanceled
End Property

Public Property Get ParMatErosionCategory() As Integer
 Select Case cboParMat.List(cboParMat.ListIndex)
 Case "Mica Schist", "Volcanic Ash", "Higly Weathered Sedimentary"
 ParMatErosionCategory = 4
 Case "Quartzite", "Course-grained Granite"
 ParMatErosionCategory = 3
 Case "Fine-grained Granite", "Moderately Weathered Rock",
"Sedimentary Rocks"
 ParMatErosionCategory = 2
 Case "Compentent Granite", "Basalt", "Metamorphic Rocks",
"Relatively Unweathered Rocks"
 ParMatErosionCategory = 1
 End Select
End Property

Public Property Get AnnualPrecipCategory() As Integer
 Select Case cboPrecip.List(cboPrecip.ListIndex)
 Case "< 1200"
 AnnualPrecipCategory = 1
 Case "1200 - 3000"
 AnnualPrecipCategory = 2
 Case "> 3000"
 AnnualPrecipCategory = 3
 End Select
End Property

Public Property Get MinContrib() As Integer
 MinContrib = CInt(tboMinContrib.Text)
End Property

Public Property Get MaxDeliveryDistance() As Integer
 MaxDeliveryDistance = CInt(tboMaxDist.Text)
End Property

71

Public Property Get SmoothRadius() As Integer
 If tboRadius.Enabled Then
 SmoothRadius = CInt(tboRadius.Text)
 Else
 SmoothRadius = 0
 End If
End Property

Public Property Get RoadUseFieldIndex() As Long
 RoadUseFieldIndex = GetFieldIndex("Use")
End Property

Public Property Get RoadAgeFieldIndex() As Long
 RoadAgeFieldIndex = GetFieldIndex("Age")
End Property

Public Property Get RoadWidthFieldIndex() As Long
 RoadWidthFieldIndex = GetFieldIndex("Width")
End Property

Public Property Get BankVegFieldIndex() As Long
 BankVegFieldIndex = GetFieldIndex("Veg.")
End Property

Public Property Get RoadSurfFieldIndex() As Long
 RoadSurfFieldIndex = GetFieldIndex("Surf.")
End Property

Public Property Get RoadGradeFieldIndex() As Long
 RoadGradeFieldIndex = GetFieldIndex("Grade")
End Property

Public Function GetFieldIndex(sFieldTypeName As String) As Long
 If Not m_pFClass Is Nothing Then
 Dim sFieldName As String
 sFieldName = lsbChoices.List(Util.GetItemIndex(lsbWanted,
sFieldTypeName))
 If StrComp(sFieldName, "", vbBinaryCompare) <> 0 Then
 GetFieldIndex = m_pFClass.FindField(sFieldName)
 Exit Function
 End If
 End If
 GetFieldIndex = -1
End Function

MODULE – MeanSlopeFnct (RSAMeanSlope.bas)

Option Explicit

Function BufferLineFeatures(pFeatClass As IFeatureClass, distance As
Double) As IFeatureClass
 On Error GoTo erh
 'create a new feature class to hold the buffers
 ' get the feature workspace
 Dim pDataset As IDataset
 Set pDataset = pFeatClass

72

 ' get the spatial ref
 Dim pGeoDs As IGeoDataset
 Set pGeoDs = pFeatClass
 ' make name for new dataset
 Dim sName As String
 sName = Util.CreateUniqueRandomName(pDataset.Workspace, "buff",
esriDTFeatureClass)
 ' open a shapefile workspace to enforce making of shapefile id
featclass is coverage
 Dim pWKSfactory As IWorkspaceFactory
 Set pWKSfactory = New ShapefileWorkspaceFactory
 Dim pWks As IFeatureWorkspace
 Set pWks = pWKSfactory.OpenFromFile(pDataset.Workspace.PathName, 0)
 ' create new feature class
 Dim pNewClass As IFeatureClass
 Set pNewClass = Util.CreateWorkspaceFeatureClass(pWks, sName,
esriFTSimple, _
 esriGeometryPolygon, , , ,
, pGeoDs.SpatialReference)
 'buffer features one at a time
 Dim pWKSEdit As IWorkspaceEdit
 Set pWKSEdit = pDataset.Workspace
 ' get feat cur into all polylines
 Dim pFeatCur As IFeatureCursor
 Set pFeatCur = pFeatClass.Search(Nothing, False)
 Dim pBuff As IFeature
 Dim pTopoOp As ITopologicalOperator
 Dim pLineFeat As IFeature
 Dim pPolyline As IPolyline
 Set pLineFeat = pFeatCur.NextFeature
 pWKSEdit.StartEditing False
 Do While Not pLineFeat Is Nothing
 Set pPolyline = pLineFeat.Shape
 Set pTopoOp = pPolyline

 Set pBuff = pNewClass.CreateFeature
 Set pBuff.Shape = pTopoOp.Buffer(distance)
 pBuff.Value(pBuff.Fields.FindField("Id")) = pLineFeat.OID
 pBuff.Store

 Set pLineFeat = pFeatCur.NextFeature
 Loop
 pWKSEdit.StopEditing True

 'return the new class
 Set BufferLineFeatures = pNewClass
 Exit Function
erh:
 MsgBox "error in buffering " & Error
 If Not pWKSEdit Is Nothing Then
 pWKSEdit.StopEditing False
 End If
End Function

Function ComputeZonalStat(pFeatClass As IFeatureClass, pRaster As
IRaster) As ITable
 On Error GoTo erh
 'create new ZonalOperator
 Dim pZonalOp As IZonalOp

73

 Set pZonalOp = New RasterZonalOp
 ' Set output workspace
 Dim pEnv As IRasterAnalysisEnvironment
 Set pEnv = pZonalOp
 Dim pDs As IDataset
 Set pDs = pFeatClass
 Set pEnv.OutWorkspace = pDs.Workspace
 'call the zonal function
 Dim pResultTable As ITable
 Set pResultTable = pZonalOp.ZonalStatisticsAsTable(pFeatClass,
pRaster, True)
 'return table
 Set ComputeZonalStat = pResultTable
 Exit Function
erh:
 MsgBox "error in RSA-ComputeZonalStat: " & Error
End Function

Sub TransferZonalSlopeToBuffers(pBuffClass As IFeatureClass, pMeanTable
As ITable)
 On Error GoTo erh
 'check to see workspace is not in editing mode
 Dim pDs As IDataset
 Set pDs = pBuffClass
 Dim pWKSEdit As IWorkspaceEdit
 Set pWKSEdit = pDs.Workspace
 If pWKSEdit.IsBeingEdited Then
 MsgBox "AddMeanField: workspace is currently being edited. exiting"
 Exit Sub
 End If
 'MsgBox "transfer1"
 'add a field to the pFeatClass
 Util.AddFieldToFeatureClass pBuffClass, "MEANSLOPE"
 'MsgBox "transfer2"
 'find the needed indexes
 Dim lMeanIdx As Long
 lMeanIdx = pMeanTable.FindField("MEAN")
 Dim lMSlopeIdx As Long
 lMSlopeIdx = pBuffClass.FindField("MEANSLOPE")
 'find the key field name
 Dim sKey As String
 sKey = pMeanTable.OIDFieldName
 'MsgBox "transfer3"
 'Start editing
 pWKSEdit.StartEditing False
 'MsgBox "transfer4"
 'Create cursor into all features
 Dim pFeatCur As IFeatureCursor
 Set pFeatCur = pBuffClass.Search(Nothing, False)
 Dim pFeat As IFeature
 Set pFeat = pFeatCur.NextFeature
 Dim pRow As IRow
 Dim pTableCur As ICursor
 Dim pTabFilter As IQueryFilter
 Set pTabFilter = New QueryFilter
 'MsgBox "transfer5!"
 Do While Not pFeat Is Nothing
 'get coresponding row
 '!!! to get the correct correspondence 1 is added to the FID

74

 '!!! old ArcInfo zonal stat OID's are offseted by 1
 pTabFilter.WhereClause = sKey & " = " & (pFeat.OID + 1)
 Set pTableCur = pMeanTable.Search(pTabFilter, False)
 Set pRow = pTableCur.NextRow
 If Not pRow Is Nothing Then
 pFeat.Value(lMSlopeIdx) = pRow.Value(lMeanIdx)
 pFeat.Store
 End If
 Set pFeat = pFeatCur.NextFeature
 Loop
 pWKSEdit.StopEditing True
 'MsgBox "transfer6"
 Exit Sub
erh:
 MsgBox "error in RSA-TransferZonalSlopeToBuffers: " & Err.Description
 If pWKSEdit.IsBeingEdited Then
 pWKSEdit.StopEditing False
 End If
End Sub

Function CreateSlope(pDEMRaster As Raster, pApp As IApplication) As
IRaster
 On Error GoTo erh
 ' Create a Spatial operator
 Dim pSurOp As ISurfaceOp
 Set pSurOp = New RasterSurfaceOp
 ' get dem props
 Dim pRasProps As IRasterProps
 Set pRasProps = pDEMRaster
 ' Set output environment
 Dim pEnv As IRasterAnalysisEnvironment
 Set pEnv = pSurOp
 Util.SetSpatialAnalysisSettings pEnv,
Util.GetSpatialAnalystSettings(pApp), pRasProps
 ' Perform Spatial operation
 Set CreateSlope = pSurOp.Slope(pDEMRaster,
esriGeoAnalysisSlopePercentrise)
 Exit Function
erh:
 MsgBox "error in RSA-CreateSlope: " & Err.Description
End Function

Function FillAllSinks(pDEMRaster As Raster, pApp As IApplication) As
IRaster
 On Error GoTo erh
 ' Create a Spatial operator
 Dim pHydroOp As IHydrologyOp
 Set pHydroOp = New RasterHydrologyOp
 ' get dem props
 Dim pRasProps As IRasterProps
 Set pRasProps = pDEMRaster
 ' Set output environment
 Dim pEnv As IRasterAnalysisEnvironment
 Set pEnv = pHydroOp
 Util.SetSpatialAnalysisSettings pEnv,
Util.GetSpatialAnalystSettings(pApp), pRasProps
 ' Perform Spatial operation
 Set FillAllSinks = pHydroOp.Fill(pDEMRaster)
 Exit Function

75

erh:
 MsgBox "error in RSA-FillSinks: " & Err.Description
End Function

Function SmoothDem(pDEMRaster As Raster, pApp As IApplication, _
 radius As Double) As IRaster
 On Error GoTo erh
 ' Create a Spatial operator
 Dim pNeighborOp As INeighborhoodOp
 Set pNeighborOp = New RasterNeighborhoodOp
 ' get dem props
 Dim pRasProps As IRasterProps
 Set pRasProps = pDEMRaster
 ' Set output environment
 Dim pEnv As IRasterAnalysisEnvironment
 Set pEnv = pNeighborOp
 Util.SetSpatialAnalysisSettings pEnv,
Util.GetSpatialAnalystSettings(pApp), pRasProps
 ' Make a raster neighborhood
 Dim pRasNeighbor As IRasterNeighborhood
 Set pRasNeighbor = New RasterNeighborhood
 pRasNeighbor.SetCircle radius, esriUnitsCells
 ' Perform Spatial operation
 Set SmoothDem = pNeighborOp.FocalStatistics(pDEMRaster,
esriGeoAnalysisStatsMean, _
 pRasNeighbor, True)
 Exit Function
erh:
 MsgBox "error in RSA-SmoothDEM: " & Err.Description
End Function

Public Function GetSegmentMeanSlope(pRoadSeg As IFeature, pBuffClass As
IFeatureClass) As Double
 Dim pFilter As ISpatialFilter
 Set pFilter = New SpatialFilter
 Set pFilter.Geometry = pRoadSeg.Shape
 pFilter.SpatialRel = esriSpatialRelWithin
 Dim pFeatCur As IFeatureCursor
 Set pFeatCur = pBuffClass.Search(pFilter, False)
 Dim pBuff As IFeature
 Set pBuff = pFeatCur.NextFeature
 If Not pBuff Is Nothing Then
 GetSegmentMeanSlope =
pBuff.Value(pBuff.Fields.FindField("MEANSLOPE"))
 End If

 Set pFilter = Nothing
 Set pFeatCur = Nothing
 Set pBuff = Nothing
End Function

MODULE – Util (RSASedModelUtil.bas)

Option Explicit

76

Public Sub SetSpatialAnalysisSettings(pEnv1 As
IRasterAnalysisEnvironment, _
 pEnv2 As
IRasterAnalysisEnvironment, _
 Optional pRasProps As
IRasterProps)
 On Error GoTo erh
 Dim nCellSize As Double
 Dim pExtent As IEnvelope
 If Not pRasProps Is Nothing Then
 'copy Spatialreference, cellsize and extent from it
 If Not pRasProps.SpatialReference Is Nothing Then
 Set pEnv1.OutSpatialReference = pRasProps.SpatialReference
 End If
 nCellSize = pRasProps.MeanCellSize.X
 Set pExtent = pRasProps.Extent
 ElseIf Not pEnv2 Is Nothing Then
 'copy SpatiaRef, extent and cell size from passed in analysis
environment
 If Not pEnv2.OutSpatialReference Is Nothing Then
 Set pEnv1.OutSpatialReference = pEnv2.OutSpatialReference
 End If
 pEnv2.GetCellSize 3, nCellSize
 pEnv2.GetExtent 3, pExtent
 End If
 If Not pEnv2 Is Nothing Then
 'copy all the other params from the given analysis env
 Set pEnv1.OutWorkspace = pEnv2.OutWorkspace
 pEnv1.DefaultOutputRasterPrefix = pEnv2.DefaultOutputRasterPrefix
 pEnv1.DefaultOutputVectorPrefix = pEnv2.DefaultOutputVectorPrefix
 If Not pEnv2.Mask Is Nothing Then
 Set pEnv1.Mask = pEnv2.Mask
 End If
 If nCellSize <> 0 Then
 pEnv1.SetCellSize 3, nCellSize
 End If
 If Not pExtent Is Nothing Then
 pEnv1.SetExtent 3, pExtent
 End If
 pEnv1.VerifyType = pEnv2.VerifyType
 End If
 Exit Sub
erh:
 MsgBox "Failed in SetSpatialAnalysisSettings: " & Err.Description
End Sub

Public Function GetRasterDataset(pRasLayer As IRasterLayer) As
IRasterDataset
 Dim pDataset As IDataset
 Set pDataset = pRasLayer
 Dim pWks As IWorkspace
 Set pWks = pDataset.Workspace
 Dim pRasWks As IRasterWorkspace
 Set pRasWks = pWks
 Dim pRasDs As IRasterDataset
 Set pRasDs = pRasWks.OpenRasterDataset(pDataset.name)
 Set GetRasterDataset = pRasDs
 'release memory
 Set pDataset = Nothing

77

 Set pWks = Nothing
 Set pRasWks = Nothing
End Function

Public Sub CheckSpatialAnalystLicense()
 ' This module is used to check in the SpatialAnalyst license
 ' in a standalone VB application.
 On Error GoTo erh

 ' Get Spatial Analyst Extension UID
 Dim pUID As New UID
 pUID.Value = "esriCore.SAExtension.1"

 ' Add Spatial Analyst extension to the license manager
 Dim v As Variant
 Dim pLicAdmin As IExtensionManagerAdmin
 Set pLicAdmin = New ExtensionManager
 Call pLicAdmin.AddExtension(pUID, v)

 ' Enable the license
 Dim pLicManager As IExtensionManager
 Set pLicManager = pLicAdmin
 Dim pExtensionConfig As IExtensionConfig
 Set pExtensionConfig = pLicManager.FindExtension(pUID)
 pExtensionConfig.State = esriESEnabled
 Exit Sub
erh:
 MsgBox "Failed in License Checking" & Err.Description
End Sub

Public Function GetSpatialAnalystSettings(ByRef pApp As IApplication) As
IRasterAnalysisEnvironment
 ' This function is used to get current Spatial Analyst's Settings:
 ' RasterAnalysis Object defined through Option dialog in Spatial
 ' Analyst UI, like workspace path, cell size, extent. However, it
 ' ignores the setting of output spatial reference in the option, in
 ' other words, it is not influenced by the change of setting
 ' outout spatial reference to be the same as the data frame's.
 On Error GoTo erh
 Dim pExtension As IExtension
 Dim pSASetting As ISpatialAnalyst ' Interface for Spatial Analyst
Setting
 ' Find Spatial Analyst Extension
 Set pExtension = pApp.FindExtensionByName("Spatial Analyst")
 If Not pExtension Is Nothing Then
 ' QI IExtention for ISpatialAnalyst
 Set pSASetting = pExtension
 ' Get IRasterAnalysisEnvironment
 Set GetSpatialAnalystSettings = pSASetting.AnalysisEnvironment
 Else
 Set GetSpatialAnalystSettings = Nothing
 End If
 Set pExtension = Nothing
 Set pSASetting = Nothing
 Exit Function
erh:
 MsgBox "Failed in getting SpatialAnalyst Setting " & Err.Description
End Function
'returns a containing the cell value.

78

'if anything goes wrong returns nodata.
Public Function GetCellValue(pRasterLayer As IRasterLayer, pPoint As
IPoint) As String
 Dim pRIDObj As IRasterIdentifyObj
 Dim pIdentify As IIdentify
 Dim pIDArray As IArray
 Dim pNewPoint As IPoint
 Set pNewPoint = New Point
 pNewPoint.X = pPoint.X
 pNewPoint.Y = pPoint.Y
 Set pIdentify = pRasterLayer
 Set pIDArray = pIdentify.Identify(pNewPoint)
 If Not pIDArray Is Nothing Then
 Set pRIDObj = pIDArray.Element(0)
 GetCellValue = pRIDObj.name
 Else
 GetCellValue = "NoData"
 End If
 'clean up
 Set pNewPoint = Nothing
 Set pIDArray = Nothing
 Set pIdentify = Nothing
 Set pRIDObj = Nothing
End Function

Public Function ValidatePosInt(sString As String) As Boolean
 If IsNumeric(sString) And Val(sString) > 0 Then
 ValidatePosInt = True
 Exit Function
 End If
 ValidatePosInt = False
End Function

Public Function GetItemIndex(lsbList As ListBox, sItem As String) As
Integer
 Dim i As Integer
 For i = 0 To lsbList.ListCount - 1
 If StrComp(sItem, lsbList.List(i)) = 0 Then
 GetItemIndex = i
 Exit Function
 End If
 Next i
 GetItemIndex = -1
End Function

Public Function ConvertMeterTo(mapUnits As esriUnits) As Double
 Select Case mapUnits
 Case esriInches
 ConvertMeterTo = 39.37
 Case esriFeet
 ConvertMeterTo = 3.281
 Case esriYards
 ConvertMeterTo = 1.094
 Case esriMiles
 ConvertMeterTo = 0.0006212
 Case esriMillimeters
 ConvertMeterTo = 1000
 Case esriCentimeters
 ConvertMeterTo = 100

79

 Case esriDecimeters
 ConvertMeterTo = 10
 Case esriMeters
 ConvertMeterTo = 1
 Case esriKilometers
 ConvertMeterTo = 0.001
 Case esriNauticalMiles
 ConvertMeterTo = 0.00054
 End Select
End Function

''
'' createWorkspaceFeatureClass: simple helper to create a featureclass
in a geodatabase workspace.
'' NOTE: when creating a feature class in a workspace it is important to
assign the spatial
'' reference to the geometry field.
''
Public Function CreateWorkspaceFeatureClass(featWorkspace As
IFeatureWorkspace, _
 name As String, _
 featType As esriFeatureType,
_
 Optional geomType As
esriGeometryType = esriGeometryPoint, _
 Optional pFields As IFields,
_
 Optional pCLSID As UID, _
 Optional pCLSEXT As UID, _
 Optional ConfigWord As
String = "", _
 Optional pSpatRef As
ISpatialReference _
) As IFeatureClass

 On Error GoTo EH

 Set CreateWorkspaceFeatureClass = Nothing
 If featWorkspace Is Nothing Then Exit Function
 If name = "" Then Exit Function

 If (pCLSID Is Nothing) Or IsMissing(pCLSID) Then
 Set pCLSID = Nothing
 Set pCLSID = New UID

 '' determine the appropriate geometry type corresponding the the
feature type
 Select Case featType
 Case esriFTSimple
 pCLSID.Value = "esricore.Feature"
 If geomType = esriGeometryLine Then geomType =
esriGeometryPolyline
 Case esriFTSimpleJunction
 geomType = esriGeometryPoint
 pCLSID.Value = "esricore.SimpleJunctionFeature"
 Case esriFTComplexJunction
 pCLSID.Value = "esricore.ComplexJunctionFeature"
 Case esriFTSimpleEdge
 geomType = esriGeometryPolyline

80

 pCLSID.Value = "esricore.SimpleEdgeFeature"
 Case esriFTComplexEdge
 geomType = esriGeometryPolyline
 pCLSID.Value = "esricore.ComplexEdgeFeature"
 Case esriFTAnnotation
 Exit Function
 End Select
 End If

 ' establish a fields collection
 If (pFields Is Nothing) Or IsMissing(pFields) Then
 Dim pFieldsEdit As esricore.IFieldsEdit
 Set pFieldsEdit = New esricore.Fields

 ''
 '' create the geometry field
 ''
 Dim pGeomDef As IGeometryDef
 Set pGeomDef = New GeometryDef
 Dim pGeomDefEdit As IGeometryDefEdit
 Set pGeomDefEdit = pGeomDef

 ' assign the spatial reference
 Dim pSR As ISpatialReference
 If (pSpatRef Is Nothing) Or IsMissing(pSpatRef) Then
 Set pSR = New esricore.UnknownCoordinateSystem
 pSR.SetDomain 0, 21474.83645, 0, 21474.83645
 pSR.SetFalseOriginAndUnits 0, 0, 100000
 Else
 Set pSR = pSpatRef
 End If

 '' assign the geometry definiton properties.
 With pGeomDefEdit
 .GeometryType = geomType
 .GridCount = 1
 .GridSize(0) = 10
 .AvgNumPoints = 2
 .HasM = False
 .HasZ = False
 Set .SpatialReference = pSR
 End With

 Dim pField As IField
 Dim pFieldEdit As IFieldEdit
 Set pField = New Field
 Set pFieldEdit = pField

 pFieldEdit.name = "shape"
 pFieldEdit.AliasName = "geometry"
 pFieldEdit.Type = esriFieldTypeGeometry
 Set pFieldEdit.GeometryDef = pGeomDef
 pFieldsEdit.AddField pField

 ''
 '' create the object id field
 ''
 Set pField = New Field
 Set pFieldEdit = pField

81

 pFieldEdit.name = "OBJECTID"
 pFieldEdit.AliasName = "object identifier"
 pFieldEdit.Type = esriFieldTypeOID
 pFieldsEdit.AddField pField

 Set pFields = pFieldsEdit
 End If

 ' establish the class extension
 If (pCLSEXT Is Nothing) Or IsMissing(pCLSEXT) Then
 Set pCLSEXT = Nothing
 End If

 ' locate the shape field
 Dim strShapeFld As String
 Dim j As Integer
 For j = 0 To pFields.FieldCount - 1
 If pFields.Field(j).Type = esriFieldTypeGeometry Then
 strShapeFld = pFields.Field(j).name
 End If
 Next

 Set CreateWorkspaceFeatureClass =
featWorkspace.CreateFeatureClass(name, pFields, pCLSID, _
 pCLSEXT, featType, strShapeFld, ConfigWord)

 Exit Function
EH:
 MsgBox Err.Description, vbInformation, "createWorkspaceFeatureClass"
End Function

Public Function CreateUniqueRandomName(pWks As IWorkspace, baseName As
String, DsType As esriDatasetType) As String
 Dim sName As String
 Math.Randomize
 Dim iRandNumber As Integer
 iRandNumber = Int(1000 * Math.Rnd + 1)
 sName = baseName & iRandNumber
 'check uniqueness end remake if necessary
 Do While Not IsUniqueName(pWks, sName, DsType)
 iRandNumber = Int(1000 * Math.Rnd + 1)
 sName = "Buff" & iRandNumber
 Loop
 CreateUniqueRandomName = sName
End Function

Public Function IsUniqueName(pWks As IWorkspace, sName As String, DsType
As esriDatasetType) As Boolean
 'return true id name is not found in this workspace
 Dim pEnumNames As IEnumDatasetName
 Set pEnumNames = pWks.DatasetNames(DsType)
 Dim pDSName As IDatasetName
 Set pDSName = pEnumNames.Next
 Do While Not pDSName Is Nothing
 If StrComp(pDSName.name, sName, vbBinaryCompare) = 0 Then
 IsUniqueName = False
 Exit Function
 End If
 Set pDSName = pEnumNames.Next

82

 Loop
 IsUniqueName = True
End Function

Public Sub AddFieldToFeatureClass(pFeatClass As IFeatureClass, sName As
String)
 'add a field to the pFeatClass
 Dim pFieldEdit As IFieldEdit
 Set pFieldEdit = New Field
 With pFieldEdit
 .name = sName
 .Type = esriFieldTypeDouble
 End With
 pFeatClass.AddField pFieldEdit
End Sub

Public Function GetIntegerFieldValue(pFeat As IFeature, lIndex As Long,
_
 iDefault As Integer) As Integer
 'see if index exists
 If lIndex > -1 Then
 'check if value is numeric
 If IsNumeric(pFeat.Value(lIndex)) Then
 GetIntegerFieldValue = pFeat.Value(lIndex)
 Exit Function
 End If
 End If
 GetIntegerFieldValue = iDefault
End Function

Public Function GetDoubleFieldValue(pFeat As IFeature, lIndex As Long, _
 iDefault As Double) As Double
 'see if index exists
 If lIndex > -1 Then
 'check if value is numeric
 If IsNumeric(pFeat.Value(lIndex)) Then
 GetDoubleFieldValue = pFeat.Value(lIndex)
 Exit Function
 End If
 End If
 GetDoubleFieldValue = iDefault
End Function

Public Function GetStringFieldValue(pFeat As IFeature, lIndex As Long, _
 iDefault As String) As String
 'see if index exists
 If lIndex > -1 Then
 GetStringFieldValue = pFeat.Value(lIndex)
 Exit Function
 End If
 GetStringFieldValue = iDefault
End Function

Public Function ConvertToAcre(units As esriUnits) As Double
 Select Case units
 Case esriInches
 ConvertToAcre = 1 / 6273000
 Case esriFeet
 ConvertToAcre = 1 / 43560

83

 Case esriYards
 ConvertToAcre = 1 / 4340
 Case esriMiles
 ConvertToAcre = 639.7953
 Case esriMillimeters
 ConvertToAcre = 1 / 4047000000#
 Case esriCentimeters
 ConvertToAcre = 1 / 40470000
 Case esriMeters
 ConvertToAcre = 1 / 4047
 Case esriKilometers
 ConvertToAcre = 247.0966
 End Select
End Function

CLASS – RSASedModel (RSASedModel.cls)

Option Explicit

Implements IExtension
Implements ISedimentModel
Implements IExtensionConfig

Private m_pExtState As esriExtensionState

Private m_pApp As IApplication
Private m_pDoc As IMxDocument
Private m_pDTSRasLyr As IRasterLayer
Private m_pSlopeRas As IRaster
Private m_pFilledRas As IRaster
Private m_pZonalBuffers As IFeatureClass

Private m_iPrecipCategoy As Integer
Private m_iParMatCategory As Integer
Private m_iMinContrib As Integer
Private m_iMaxDelDist As Integer
Private m_iSmoothRadius As Integer, m_iLastRadius As Integer
Private m_lRoadUseFI As Long
Private m_lRoadAgeFI As Long
Private m_lRoadWidthFI As Long
Private m_lRoadSurfFI As Long
Private m_lBankVegFI As Long
Private m_lRoadGradeFI As Long

Private m_iDefaultAge As Integer
Private m_iDefaultCover As Integer
Private m_iDefaultGrade As Integer
Private m_iDefaultWidth As Integer
Private m_sDefaultSurface As String
Private m_sDefaultTraffic As String

Private Function SurfacingCorrectionFactor(sSurface As String) As Double
 Select Case sSurface
 Case "P", "p"
 SurfacingCorrectionFactor = 0.03

84

 Case "DO", "do", "D-O", "d-o", "Do", "D-o"
 SurfacingCorrectionFactor = 0.15
 Case "G6", "g6", "G-6", "g-6"
 SurfacingCorrectionFactor = 0.2
 Case "G2", "g2", "G-2", "g-2"
 SurfacingCorrectionFactor = 0.5
 Case "N", "R", "n", "r"
 SurfacingCorrectionFactor = 1#
 Case Else
 SurfacingCorrectionFactor = 1#
 End Select
End Function

Private Function TrafficCorrectionFactor(sTraffic As String) As Double
 Select Case sTraffic
 'heavy traffic / active mainline
 Case "h", "H", "AM", "am", "Am"
 If m_iPrecipCategoy = 1 Then ' < 1200 mm/year
 TrafficCorrectionFactor = 20
 ElseIf m_iPrecipCategoy = 2 Then
 TrafficCorrectionFactor = 50
 Else
 TrafficCorrectionFactor = 120
 End If
 'moderate traffic / active secondary
 Case "m", "M", "AS", "as", "As"
 If m_iPrecipCategoy = 1 Then ' < 1200 mm/year
 TrafficCorrectionFactor = 2
 ElseIf m_iPrecipCategoy = 2 Then
 TrafficCorrectionFactor = 4
 Else ' > 3000 mm/year
 TrafficCorrectionFactor = 10
 End If
 'light traffic / not active
 Case "l", "L", "NA", "na", "Na"
 TrafficCorrectionFactor = 1
 'no traffic / abandoned
 Case "n", "N", "a", "A"
 If m_iPrecipCategoy = 1 Then
 TrafficCorrectionFactor = 0.02
 ElseIf m_iPrecipCategoy = 2 Then
 TrafficCorrectionFactor = 0.05
 Else
 TrafficCorrectionFactor = 0.1
 End If
 'everything else
 Case Else ' assume low values
 TrafficCorrectionFactor = 1
 End Select
End Function

Private Property Get IExtension_Name() As String
 IExtension_Name = "RSA Sediment Modeler"
End Property

Private Sub IExtension_Shutdown()
 Set m_pApp = Nothing
 Set m_pDoc = Nothing
 Set m_pDTSRasLyr = Nothing

85

End Sub

Private Sub IExtension_Startup(initializationData As Variant)
 Set m_pApp = initializationData
 Set m_pDoc = m_pApp.Document

End Sub

Private Property Get IExtensionConfig_Description() As String
 IExtensionConfig_Description = "Sediment Modeler for Road Sediment
Analyst"
End Property

Private Property Get IExtensionConfig_ProductName() As String
 IExtensionConfig_ProductName = "RSA Sediment Modeler"
End Property

Private Property Let IExtensionConfig_State(ByVal RHS As
esricore.esriExtensionState)
 m_pExtState = RHS
End Property

Private Property Get IExtensionConfig_State() As
esricore.esriExtensionState
 IExtensionConfig_State = m_pExtState
End Property

Private Function ComputeDistanceToStreams(pElevationRaster As
esricore.IRaster, _
 Optional lContribCells As
Long) As Boolean
 On Error GoTo erh

 'use either the value passed in or the one set by the user
 If lContribCells = 0 Then lContribCells = m_iMinContrib

 'define raster model
 Dim pRModel As IRasterModel
 Set pRModel = New RasterModel

 ' Create spatial analysis environment
 Dim pEnv As IRasterAnalysisEnvironment
 Set pEnv = pRModel

 ' Set Raster Analysis parameters
 Dim pRasProps As IRasterProps
 Set pRasProps = pElevationRaster
 Util.SetSpatialAnalysisSettings pEnv,
Util.GetSpatialAnalystSettings(m_pApp), pRasProps

 ' Set model, vbLf is used to separate equations
 Dim sScript As String
 Dim pDEMRaster As esricore.IRaster

 If m_iSmoothRadius > 0 Then 'user wants smoothing
 If m_iSmoothRadius <> m_iLastRadius Then 'must calculate rasters
 Dim pSmoothRaster As esricore.IRaster
 Dim pFilledRaster As esricore.IRaster

86

 m_iLastRadius = m_iSmoothRadius 'reset last radius for future
reference

 Set pSmoothRaster = MeanSlopeFnct.SmoothDem(pElevationRaster,
m_pApp, _
 CDbl(m_iSmoothRadius))
 Set m_pFilledRas = MeanSlopeFnct.FillAllSinks(pSmoothRaster,
m_pApp)
 End If
 'use the raster from last pass
 Set pDEMRaster = m_pFilledRas
 Else
 Set pDEMRaster = pElevationRaster
 End If

 pRModel.Script = "[fdir] = flowdirection([dem], #, force)" & vbLf & _
 "[facc] = flowaccumulation([fdir])" & vbLf & _
 "[istr] = con([facc] > " & lContribCells & ", 0, 1)"
& vbLf & _
 "[wght] = [istr] * sqrt(1 + pow([slp] / 100, 2))" &
vbLf & _
 "[dtst] = flowlength([fdir], [wght], downstream)"

 ' Bind to raster
 pRModel.BindRaster pDEMRaster, "dem"
 pRModel.BindRaster m_pSlopeRas, "slp"

 ' Run the model
 pRModel.Execute

 ' Unbind raster
 pRModel.UnbindSymbol "dem"
 pRModel.UnbindSymbol "slp"

 ' Get outputs
 Dim pOutRas As IRaster
 Set pOutRas = pRModel.BoundRaster("dtst")
 ' Set pointer to new output raster
 Set m_pDTSRasLyr = New RasterLayer
 m_pDTSRasLyr.CreateFromRaster pOutRas
 'add layer to map
 m_pDTSRasLyr.Visible = False
 m_pDoc.AddLayer m_pDTSRasLyr
 m_pDoc.FocusMap.MoveLayer m_pDTSRasLyr, m_pDoc.FocusMap.LayerCount - 1

' ' Make this dataset permanent
' Dim pTempRas As ITemporaryDataset
' Set pTempRas = Util.GetRasterDataset(m_pDTSRasLyr)
' If pTempRas.IsTemporary Then pTempRas.MakePermanent

 ComputeDistanceToStreams = True

 'release memory
 Set pRModel = Nothing
 Set pRasProps = Nothing
 Set pEnv = Nothing
 Exit Function
erh:
 MsgBox "error in ComputeDistToStream " & Error

87

 ComputeDistanceToStreams = False
End Function

Public Property Let ISedimentModel_DistanceToStream(ByVal RHS As
esricore.IRasterLayer)
 Set m_pDTSRasLyr = RHS
End Property

Public Property Get ISedimentModel_DistanceToStream() As
esricore.IRasterLayer
 Set ISedimentModel_DistanceToStream = m_pDTSRasLyr
End Property

Public Function ISedimentModel_GetDeliveryPotential(pQueryPoint As
esricore.IPoint) As Double
 Dim sValue As String
 sValue = Util.GetCellValue(m_pDTSRasLyr, pQueryPoint)
 If StrComp(sValue, "NoData", vbTextCompare) <> 0 Then
 ISedimentModel_GetDeliveryPotential = CalcDelPot(CDbl(sValue))
 Else
 ISedimentModel_GetDeliveryPotential = 0#
 End If
End Function

Public Function ISedimentModel_GetSedimentProduction(pRoadSegment As
esricore.IFeature) As Double
 On Error GoTo erh

 Dim dSedProd As Double
 'get road age
 Dim iRoadAge As Integer
 iRoadAge = Util.GetIntegerFieldValue(pRoadSegment, m_lRoadAgeFI,
m_iDefaultAge)
 'basic erosion rate in tons/year/acre of road prism
 Dim iBaseSed As Integer
 iBaseSed = BasicErosionRate(iRoadAge)
 'cover factor
 Dim iCover As Integer
 iCover = Util.GetIntegerFieldValue(pRoadSegment, m_lBankVegFI,
m_iDefaultCover)
 Dim dCovFact As Double
 dCovFact = CoverCorrectionFactor(iCover, iRoadAge)
 'surfacing factor
 Dim sSurf As String
 sSurf = Util.GetStringFieldValue(pRoadSegment, m_lRoadSurfFI,
m_sDefaultSurface)
 Dim dSurfFact As Double
 dSurfFact = SurfacingCorrectionFactor(sSurf)
 'traffic factor
 Dim sTraf As String
 sTraf = Util.GetStringFieldValue(pRoadSegment, m_lRoadUseFI,
m_sDefaultTraffic)
 Dim dTrafFact As Double
 dTrafFact = TrafficCorrectionFactor(sTraf)
 'grade factor
 Dim iRoadGrade As Integer
 iRoadGrade = Math.Abs(Util.GetIntegerFieldValue(pRoadSegment,
m_lRoadGradeFI, m_iDefaultGrade))
 Dim dGradeFact As Double

88

 dGradeFact = GradeCorrectionFactor(iRoadGrade)

 'compute sediment production in tons/year/acre of road prism
 Dim dThreadSed As Double, dCutSlopeSed As Double
 dThreadSed = 0.4 * iBaseSed * dGradeFact * dTrafFact * dSurfFact
 dCutSlopeSed = 0.4 * iBaseSed * dCovFact

 'get surface of both the thread and cut bank
 Dim pPolyline As IPolyline
 Set pPolyline = pRoadSegment.Shape
 Dim dLength As Double, dThreadWidth As Double, dCutWidth As Double
 dLength = pPolyline.Length
 dThreadWidth = Util.GetDoubleFieldValue(pRoadSegment, m_lRoadWidthFI,
CDbl(m_iDefaultWidth))
 dCutWidth = CutSlopeWidth(pRoadSegment, dThreadWidth)
 Dim dThreadArea As Double, dCutArea As Double
 'the sediment rate is in Tons/acre/year
 'convert square map units to acre
 dThreadArea = dLength * dThreadWidth *
Util.ConvertToAcre(m_pDoc.FocusMap.mapUnits)
 dCutArea = dLength * dCutWidth *
Util.ConvertToAcre(m_pDoc.FocusMap.mapUnits)

 'return result
 ISedimentModel_GetSedimentProduction = dThreadSed * dThreadArea +
dCutSlopeSed * dCutArea

 Exit Function
erh:
 MsgBox "RSA SedModel -- error in GetSedimentProduction" & vbLf & Error
End Function
Private Function CalcDelPot(dDistToStream As Double) As Double
 'based on Ketcheson and Megahan "Sediment Production and Downslope..."
 'modification : do not allow values under 0.0001 for proportional
symbol
 'display restrictions.
 'also modified to accept different values for maxDelDistance - needs
theoretical profing
 On Error GoTo erh
 Dim dPotential As Double
 dPotential = 1.0362 * Exp(-100 * dDistToStream / (32.88 *
m_iMaxDelDist)) - 0.0555
 If dPotential < 0.001 Then
 CalcDelPot = 0
 Exit Function
 End If
 CalcDelPot = dPotential

 Exit Function
erh:
 CalcDelPot = 0.001
End Function

Private Function ComputeMeanTerrainSlope(pRoads As IFeatureClass, pElev
As IRaster) As Boolean
 On Error GoTo erh

 If m_pZonalBuffers Is Nothing Then
 'create a slope raster layer

89

 'MsgBox "debug 1"
 Set m_pSlopeRas = MeanSlopeFnct.CreateSlope(pElev, m_pApp)

 'buffer the roads
 'MsgBox "debug 2"
 Dim dDist As Double
 dDist = 30 * Util.ConvertMeterTo(m_pDoc.FocusMap.mapUnits)
 Dim pBuffClass As IFeatureClass
 Set pBuffClass = MeanSlopeFnct.BufferLineFeatures(pRoads, dDist)

 'MsgBox "debug 3"
 'run zonal operation on slopes to roads
 Dim pZoneTable As ITable
 Set pZoneTable = MeanSlopeFnct.ComputeZonalStat(pBuffClass,
m_pSlopeRas)
 'MsgBox "debug 4"
 'transfer mean slopes onto the buffers
 MeanSlopeFnct.TransferZonalSlopeToBuffers pBuffClass, pZoneTable
 'MsgBox "debug 5"
 'delete the leftover datasets
 Dim pDs As IDataset
 Set pDs = pZoneTable
 pDs.Delete
 'MsgBox "debug 6"

 'return true
 Set m_pZonalBuffers = pBuffClass
 End If

 ComputeMeanTerrainSlope = True

 Exit Function
erh:
 MsgBox "RSA SedModel -- error in ComputeMeanTerrainSlope" & vbLf &
Error
 ComputeMeanTerrainSlope = False
End Function

' returns the basic sediment production in tones /year /acre of road
Private Function BasicErosionRate(iAge As Integer) As Integer
 Select Case m_iParMatCategory
 Case 1
 If iAge > 2 Then
 BasicErosionRate = 10
 Else
 BasicErosionRate = 20
 End If
 Case 2
 If iAge > 2 Then
 BasicErosionRate = 30
 Else
 BasicErosionRate = 60
 End If
 Case 3
 If iAge > 2 Then
 BasicErosionRate = 30
 Else
 BasicErosionRate = 110
 End If

90

 Case 4
 If iAge > 2 Then
 BasicErosionRate = 60
 Else
 BasicErosionRate = 110
 End If
 End Select
End Function

' returns the cover correction factor as ratio
' pass in a negative dCover to approximate cover by age
Private Function CoverCorrectionFactor(iCover As Integer, iRoadAge As
Integer) As Double
 Dim CovValue As Integer
 CovValue = 0 ' default value, also assumed for new road
 If iCover < 0 Then
 If iRoadAge > 2 Then CovValue = 50
 Else:
 CovValue = iCover
 End If
 Select Case CovValue + 0.0001
 Case 0 To 10
 CoverCorrectionFactor = 1#
 Case 10 To 20
 CoverCorrectionFactor = 0.77
 Case 20 To 30
 CoverCorrectionFactor = 0.63
 Case 30 To 50
 CoverCorrectionFactor = 0.53
 Case 50 To 80
 CoverCorrectionFactor = 0.37
 Case Is > 80
 CoverCorrectionFactor = 0.18
 End Select
End Function
' grade is in percent rise/length
Private Function GradeCorrectionFactor(iGrade As Integer) As Double
 'CH Luce and TA Black 1999 - Sediment production from forest roads in
Oregon
 'shown erosion proportional with square of road grade
 'GradeCorrectionFactor = iGrade * iGrade / 36
 GradeCorrectionFactor = iGrade / 6
End Function

Private Function CutSlopeWidth(pRoadFeature As IFeature, dWidth As
Double) As Double
 Const PI = 3.14159265358979

 ' get the angles
 Dim alpha As Double, beta As Double
 beta = 0.785398 ' 1:1 cutslope angle in radians
 Dim dMeanSideSlope As Double
 dMeanSideSlope = MeanSlopeFnct.GetSegmentMeanSlope(pRoadFeature,
m_pZonalBuffers)
 alpha = Math.Atn(dMeanSideSlope / 100)

 ' enforce Beta to be bigger than Alpha
 If beta - alpha <= 0 Then
 beta = 1.107148 ' 2:1 cut slope in radians

91

 If beta - alpha <= 0 Then
 beta = alpha + PI / 180 ' add one degree to alpha
 End If
 End If

 ' determine the benched width of road
 Dim bench As Double
 Select Case (alpha * 180 / PI)
 Case Is > 55
 bench = dWidth
 Case 25 To 55
 bench = 2 * dWidth / 3
 Case Is < 25
 bench = dWidth / 2
 End Select

 'compute the cutslope length
 CutSlopeWidth = bench * Math.Sin(alpha) / Math.Sin(beta - alpha)

 Exit Function
erh:
 MsgBox "RSA SedModel -- error in CutSlopeWidth" & vbLf & Error
End Function

Public Property Let ISedimentModel_MaxDeliveryDistance(ByVal RHS As
Integer)
 m_iMaxDelDist = RHS
End Property

Public Property Get ISedimentModel_MaxDeliveryDistance() As Integer
 ISedimentModel_MaxDeliveryDistance = m_iMaxDelDist
End Property

Public Function ISedimentModel_RunRasterAnalysis(pRoadClass As
esricore.IFeatureClass, _
 pElevationModel As
esricore.IRaster) As Boolean
 On Error GoTo erh

 'check license
 Util.CheckSpatialAnalystLicense

 ' Change cursor while calculating
 Dim pCur As IMouseCursor
 Dim bSuccesful As Boolean
 Dim pUserDialog As New frmSedModelParam
 pUserDialog.InitializeData pRoadClass
 pUserDialog.Show vbModal
 'dialog is modal so execution thread would interupt
 'check if dialog completed normally and was not cancel
 If Not pUserDialog.WasCanceled Then

 'get the user settings
 m_lRoadAgeFI = pUserDialog.RoadAgeFieldIndex
 m_lRoadUseFI = pUserDialog.RoadUseFieldIndex
 m_lRoadWidthFI = pUserDialog.RoadWidthFieldIndex
 m_lRoadGradeFI = pUserDialog.RoadGradeFieldIndex
 m_lBankVegFI = pUserDialog.BankVegFieldIndex
 m_lRoadSurfFI = pUserDialog.RoadSurfFieldIndex

92

 m_iMaxDelDist = pUserDialog.MaxDeliveryDistance
 m_iMinContrib = pUserDialog.MinContrib
 m_iSmoothRadius = pUserDialog.SmoothRadius
 m_iParMatCategory = pUserDialog.ParMatErosionCategory
 m_iPrecipCategoy = pUserDialog.AnnualPrecipCategory

 'prepare the zonal slope buffers for later use
 Set pCur = New MouseCursor
 pCur.SetCursor 2
 bSuccesful = ComputeMeanTerrainSlope(pRoadClass, pElevationModel)
 If bSuccesful Then bSuccesful =
ComputeDistanceToStreams(pElevationModel)
 Else
 bSuccesful = False
 End If

 If Not pCur Is Nothing Then pCur.SetCursor 0
 'unload form
 Unload pUserDialog
 'release memory
 Set pUserDialog = Nothing
 Set pCur = Nothing

 ISedimentModel_RunRasterAnalysis = bSuccesful
 Exit Function
erh:
 If Not pCur Is Nothing Then
 pCur.SetCursor 0
 Set pCur = Nothing
 End If
 MsgBox "RSA SedModel -- error in ComputeSedimentProduction" & vbLf &
Error
 ISedimentModel_RunRasterAnalysis = False
End Function

Public Property Let ISedimentmodel_DefaultRoadAge(ByVal vNewValue As
Integer)
 m_iDefaultAge = vNewValue
End Property

Public Property Let ISedimentModel_DefaultSlopeCover(ByVal vNewValue As
Integer)
 m_iDefaultCover = vNewValue
End Property

Public Property Let ISedimentmodel_DefaultRoadWidth(ByVal vNewValue As
Integer)
 m_iDefaultWidth = vNewValue
End Property

Public Property Let ISedimentmodel_DefaultRoadGrade(ByVal vNewValue As
Integer)
 m_iDefaultGrade = vNewValue
End Property

Public Property Let iSedimentmodel_DefaultRoadSurface(ByVal vNewValue As
String)
 m_sDefaultSurface = vNewValue
End Property

93

Public Property Let Isedimentmodel_DefaultRoadTraffic(ByVal vNewValue As
String)
 m_sDefaultTraffic = vNewValue
End Property

Public Sub ISedimentModel_StopSession()
 Set m_pZonalBuffers = Nothing
 Set m_pSlopeRas = Nothing
 Set m_pFilledRas = Nothing
 m_iLastRadius = 0
End Sub

CULSED Main Program Code

FORM – frmChildDec (frmChildDec.frm)

Option Explicit

Public Event HasFinished(bCancel As Boolean)

Private colDecisions As Collection
Private pLayer As IFeatureLayer
Private pFeatSel As IFeatureSelection
Private pFilter As IQueryFilter
Private pFeatCur As IFeatureCursor
Private pFeat As IFeature
Private pSelSet As ISelectionSet
Private pActiveView As IActiveView
Private lValue As Long

'the following are for showing this window always on top
Private Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long,
_
ByVal hWndInsertAfter As Long, ByVal X As Long, _
ByVal Y As Long, ByVal CX As Long, ByVal CY As Long, _
ByVal wFlags As Long) As Long
Private Const SWP_NOMOVE = 2
Private Const SWP_NOSIZE = 1
Private Const HWND_TOPMOST = -1
Private Const HWND_NOTOPMOST = -2

Private Sub LoadUndecided()
 'load form's list1 with the values passed from an array
 Dim colChildren As Collection
 For Each colChildren In colDecisions
 lsbList1.AddItem (colChildren.Item(1))
 lsbList2.AddItem ("")
 Next
End Sub

Private Sub btnIn_Click()
 'get selection and put first item in list2
 Set pSelSet = pFeatSel.SelectionSet
 pSelSet.Search Nothing, False, pFeatCur
 Set pFeat = pFeatCur.NextFeature

94

 If (Not pFeat Is Nothing) And lsbList1.ListIndex > -1 Then
 lValue = pFeat.Value(pFeat.Fields.FindField("RSAID"))
 If Exists(lsbList1.ListIndex, lValue) Then
 lsbList2.List(lsbList1.ListIndex) = lValue
 End If
 End If
 'validate list2 in order to release the finish button
 If ValidateAllEntries Then btnFinish.Enabled = True
End Sub

Private Sub btnCancel_Click()
 'hide form and destroy form data
 Me.Hide
 pFeatSel.Clear
 pFeatSel.SelectionChanged
 pActiveView.PartialRefresh esriViewGeography, pLayer, Nothing
 RaiseEvent HasFinished(True)
End Sub

Private Sub btnFinish_Click()
 'call the rest of the set-up methods, pass back an array of children
 Me.Hide
 RemoveFromCollection
 RaiseEvent HasFinished(False)
End Sub

Private Sub btnOut_Click()
 'get selected item from list1 and eliminate corespondent from list2
 If lsbList1.ListIndex > -1 Then
 lsbList2.List(lsbList1.ListIndex) = ""
 End If
 'disable the finish button
 btnFinish.Enabled = False
End Sub

Private Sub Form_Load()
 SetOnTop Me.hwnd, True
End Sub

Private Sub lsbList1_Click()
 'select correspondent item in list 2
 lsbList2.Selected(lsbList1.ListIndex) = True
 'select the feature the user clicked on
 pFilter.WhereClause = "RSAID = " & lsbList1.List(lsbList1.ListIndex)
 pFeatSel.SelectFeatures pFilter, esriSelectionResultNew, False
 pFeatSel.SelectionChanged
 pActiveView.PartialRefresh esriViewGeography, pLayer, Nothing
End Sub

'acts as a constructor. Change when implementing in VB!
Public Sub SetUpDialog(ByRef colUserDec As Collection, pFeatLayer As
IFeatureLayer, _
 ByRef pMap As IMap)

 'pointer to the collection passed by ref
 Set colDecisions = colUserDec
 Set pLayer = pFeatLayer
 LoadUndecided
 'set up selection set

95

 Set pFeatSel = pLayer
 Set pFilter = New QueryFilter
 Set pSelSet = pFeatSel.SelectionSet
 Set pActiveView = pMap
End Sub
'verifies that all values have been set to valid numbers
Private Function ValidateAllEntries() As Boolean
 Dim counter As Integer
 For counter = 0 To lsbList1.ListCount - 1
 If "" = lsbList2.List(counter) Then
 ValidateAllEntries = False
 Exit Function
 End If
 Next counter
 ValidateAllEntries = True
End Function
'for each road segment remove the child the user selected
Private Sub RemoveFromCollection()
 Dim colChildren As Collection
 Dim iCounter As Integer, iListIndex As Integer
 iListIndex = 0
 For Each colChildren In colDecisions
 For iCounter = colChildren.count To 2 Step -1
 If colChildren(iCounter) = lsbList2.List(iListIndex) Then
 colChildren.Remove (iCounter)
 iCounter = iCounter - 1
 End If
 Next iCounter
 iListIndex = iListIndex + 1
 Next
 Set colChildren = Nothing
End Sub

Private Function Exists(iIndex As Integer, lValue As Long) As Boolean
 Dim colChildren As Collection
 Set colChildren = colDecisions(iIndex + 1)
 Dim i As Integer
 For i = 2 To colChildren.count
 If lValue = colChildren(i) Then
 Exists = True
 Set colChildren = Nothing
 Exit Function
 End If
 Next i
 Exists = False
 Set colChildren = Nothing
End Function

Public Sub SetOnTop(ByVal hwnd As Long, ByVal bSetOnTop As Boolean)
 Dim lR As Long
 If bSetOnTop Then
 lR = SetWindowPos(hwnd, HWND_TOPMOST, 0, 0, 0, 0, SWP_NOSIZE)
 Else
 lR = SetWindowPos(hwnd, HWND_NOTOPMOST, 0, 0, 0, 0, SWP_NOSIZE)
 End If
End Sub

96

FORM – frmGradeField (frmGradeField.frm)

Option Explicit

'the following are for showing this window always on top
Private Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long,
_
ByVal hWndInsertAfter As Long, ByVal X As Long, _
ByVal Y As Long, ByVal CX As Long, ByVal CY As Long, _
ByVal wFlags As Long) As Long
Private Const SWP_NOMOVE = 2
Private Const SWP_NOSIZE = 1
Private Const HWND_TOPMOST = -1
Private Const HWND_NOTOPMOST = -2

Private Sub Form_Load()
 SetOnTop Me.hwnd, True
End Sub

Public Sub SetOnTop(ByVal hwnd As Long, ByVal bSetOnTop As Boolean)
 Dim lR As Long
 If bSetOnTop Then
 lR = SetWindowPos(hwnd, HWND_TOPMOST, 0, 0, 0, 0, SWP_NOSIZE)
 Else
 lR = SetWindowPos(hwnd, HWND_NOTOPMOST, 0, 0, 0, 0, SWP_NOSIZE)
 End If
End Sub

Public Property Get GradeValue() As String
 GradeValue = tboGradeField.Text
End Property

Public Property Let GradeValue(ByVal sNewValue As String)
 tboGradeField.Text = sNewValue
 tboGradeField.SelLength = 4
End Property

FORM – frmGradeName.frm

Option Explicit

Private m_pExt As clsExt
Private m_bCompletedOk As Boolean

Private Sub cmdCancel_Click()
 m_bCompletedOk = False
 Me.Visible = False
End Sub

Private Sub cmdOK_Click()
 If Not m_pExt Is Nothing Then
 Dim sFieldName As String
 If optExists.Value Then
 'get field name
 sFieldName = cboFields.List(cboFields.ListIndex)

97

 'set RSA grade name
 m_pExt.GradeName = sFieldName
 'signal success
 m_bCompletedOk = True

 ElseIf optCreate.Value Then
 'get field name
 sFieldName = tboName.Text

 'verify if field exsits
 If Not Util.ExistsField(m_pExt.RoadLayer.FeatureClass, sFieldName)
Then
 'show dialog
 Dim response As VbMsgBoxResult
 response = MsgBox("Field " & sFieldName & " already exists!" &
vbLf & "Use it?", vbYesNo)
 If response = vbNo Then Exit Sub ' return to the form
 End If

 'create field
 If Util.AddField(m_pExt.RoadLayer.FeatureClass, sFieldName,
esriFieldTypeInteger) Then
 'set RSA grade name
 m_pExt.GradeName = sFieldName
 'signal success
 m_bCompletedOk = True
 Else
 m_bCompletedOk = False
 End If

 End If
 Else
 m_bCompletedOk = False
 End If
 Me.Visible = False
End Sub

Private Sub Form_Load()
 If Not m_pExt Is Nothing Then
 'load fields
 If Not m_pExt.RoadLayer Is Nothing Then
 LoadFields m_pExt.RoadLayer.FeatureClass
 'select first element
 If cboFields.ListCount > -1 Then
 cboFields.ListIndex = 0
 End If
 End If
 End If
End Sub

Private Sub Form_Terminate()
 Set m_pExt = Nothing
End Sub

Private Sub optCreate_Click()
 'disable combo box
 cboFields.Enabled = False
 lblE.Enabled = False
 ckOverride.Enabled = False

98

 'enable text field
 tboName.Enabled = True
 tboName.SetFocus
 lblC.Enabled = True

End Sub

Private Sub optExists_Click()
 'disable test field
 tboName.Enabled = False
 lblC.Enabled = False
 'enable combo
 cboFields.Enabled = True
 lblE.Enabled = True
 ckOverride.Enabled = True
End Sub

Public Property Let RSAExtension(ByRef RSA As clsExt)
 Set m_pExt = RSA
End Property

Public Property Get CompletedOK() As Boolean
 CompletedOK = m_bCompletedOk
End Property

Private Sub LoadFields(pFClass As IFeatureClass)
 'load fields
 If Not pFClass Is Nothing Then
 Dim pFields As IFields
 Set pFields = pFClass.Fields
 Dim i As Integer
 For i = 0 To pFields.FieldCount - 1
 cboFields.AddItem pFields.Field(i).Name
 Next i
 Set pFields = Nothing
 End If
End Sub

Public Property Get OverrideValues() As Boolean
 If ckOverride.Enabled Then
 If ckOverride.Value = 1 Then
 OverrideValues = True
 Else
 OverrideValues = False
 End If
 Else: OverrideValues = True
 End If
End Property

FORM – frmOptions (frmOptions.frm)

Option Explicit
Private m_pApp As IApplication
Private m_pPar As clsExt

Public Sub SetUpBoxes(pPar As clsExt, pApp As IApplication)

99

 Set m_pApp = pApp
 Set m_pPar = pPar

 'find all available extensions that implement SedimentModel
 Dim pExtManager As IExtensionManager
 Set pExtManager = pApp
 Dim pExt As IExtension
 Dim i As Integer
 For i = 0 To pExtManager.ExtensionCount - 1
 Set pExt = pExtManager.Extension(i)
 If TypeOf pExt Is ISedimentModel Then
 lsbSedModel.AddItem pExt.Name
 End If
 Next i
 'identify the one stored within the parent extension and select it
 lsbSedModel.ListIndex = Util.FindItemInListBox(lsbSedModel,
m_pPar.SedModelName)
 'if no selection has been made select the first in the list
 If lsbSedModel.ListIndex = -1 And lsbSedModel.ListCount > 0 Then
 lsbSedModel.ListIndex = 0
 End If

 'populate combo boxes with values
 cboAge.AddItem "0"
 cboAge.AddItem "3"
 For i = 0 To 18
 cboGrade.AddItem i
 Next i
 cboSurface.AddItem "P"
 cboSurface.AddItem "DO"
 cboSurface.AddItem "G2"
 cboSurface.AddItem "G6"
 cboSurface.AddItem "N"
 For i = 1 To 24
 cboWidth.AddItem i
 Next i
 cboTraffic.AddItem "H"
 cboTraffic.AddItem "M"
 cboTraffic.AddItem "L"
 cboTraffic.AddItem "A"
 For i = 0 To 10
 cboCover.AddItem i * 10
 Next i

 'identify the values stored in extension and select them
 cboAge.ListIndex = Util.FindItemInComboBox(cboAge,
CStr(m_pPar.DefaultRoadAge))
 cboGrade.ListIndex = Util.FindItemInComboBox(cboGrade,
CStr(m_pPar.DefaultRoadGrade))
 cboSurface.ListIndex = Util.FindItemInComboBox(cboSurface,
m_pPar.DefaultRoadSurface)
 cboWidth.ListIndex = Util.FindItemInComboBox(cboWidth,
CStr(m_pPar.DefaultRoadWidth))
 cboTraffic.ListIndex = Util.FindItemInComboBox(cboTraffic,
m_pPar.DefaultRoadTraffic)
 cboCover.ListIndex = Util.FindItemInComboBox(cboCover,
CStr(m_pPar.DefaultSlopeCover))

End Sub

100

Private Sub btnCancel_Click()
 Unload Me
End Sub

Private Sub btnSet_Click()
 'get value from the contributing area field
 On Error GoTo erh

 'get value from the lsbSedModel
 m_pPar.SedModelName = lsbSedModel.List(lsbSedModel.ListIndex)

 m_pPar.DefaultRoadAge = Val(cboAge.List(cboAge.ListIndex))
 m_pPar.DefaultRoadGrade = Val(cboGrade.List(cboGrade.ListIndex))
 m_pPar.DefaultRoadSurface = cboSurface.List(cboSurface.ListIndex)
 m_pPar.DefaultRoadWidth = Val(cboWidth.List(cboWidth.ListIndex))
 m_pPar.DefaultRoadTraffic = cboTraffic.List(cboTraffic.ListIndex)
 m_pPar.DefaultSlopeCover = Val(cboCover.List(cboCover.ListIndex))

 Unload Me
 Exit Sub
erh:
 MsgBox "error in set button action" & Error
End Sub

Private Sub Form_Unload(Cancel As Integer)
 Set m_pApp = Nothing
 Set m_pPar = Nothing
End Sub

FORM – frmSetData (frmSetData.frm)

Option Explicit

Private m_iCurrentIndex As Integer
Private m_bSucces As Boolean
Private m_pParent As clsStart

Private Sub btnAdd_Click()
 PromoteLayer
End Sub

Private Sub btnBack_Click()
 If m_iCurrentIndex > 0 Then
 m_iCurrentIndex = m_iCurrentIndex - 1
 lsbIds.Selected(m_iCurrentIndex) = True
 lblHead.Caption = "Select " & lsbIds.List(m_iCurrentIndex) & "
Layer"

 If "" = lsbUserDecisions.List(m_iCurrentIndex) Then
 btnAdd.Enabled = True
 btnRemove.Enabled = False
 Else
 btnAdd.Enabled = False
 btnRemove.Enabled = True
 End If

101

 If m_iCurrentIndex = lsbIds.ListCount - 2 Then
 btnNext.Caption = "Next"
 ElseIf m_iCurrentIndex = 0 Then
 btnBack.Enabled = False
 End If
 End If

End Sub

Private Sub btnCancel_Click()
 'hide form
 Me.Hide
 'set flag unsucessful
 m_bSucces = False
End Sub

Private Sub btnNext_Click()
 If m_iCurrentIndex < lsbIds.ListCount - 1 Then
 m_iCurrentIndex = m_iCurrentIndex + 1
 If m_iCurrentIndex = lsbIds.ListCount - 1 Then
 btnNext.Caption = "Finish"
 End If
 Else
 'check if all layers have been set and send them to the extension
 If ValidateLayers() Then
 'send layers
 m_pParent.ReceiveLayers lsbUserDecisions.List(0),
lsbUserDecisions.List(1), _
 lsbUserDecisions.List(2),
lsbUserDecisions.List(3), _
 ckbCopy.Value
 'flag operation as succesful
 m_bSucces = True
 Me.Hide
 Else
 MsgBox "Please set all required layers!"
 'flag operation as insuccesful
 m_bSucces = False
 End If
 End If
 lsbIds.Selected(m_iCurrentIndex) = True
 lblHead.Caption = "Select " & lsbIds.List(m_iCurrentIndex) & " Layer"
 btnBack.Enabled = True
 If "" = lsbUserDecisions.List(m_iCurrentIndex) Then
 btnAdd.Enabled = True
 btnRemove.Enabled = False
 Else
 btnAdd.Enabled = False
 btnRemove.Enabled = True
 End If
End Sub

Private Sub btnRemove_Click()
 lsbAvailable.AddItem lsbUserDecisions.List(m_iCurrentIndex)
 lsbUserDecisions.List(m_iCurrentIndex) = ""

 btnAdd.Enabled = True
 btnRemove.Enabled = False

102

End Sub

Private Sub Form_Initialize()
 Me.lsbIds.AddItem "Roads", 0
 lsbUserDecisions.AddItem "", 0
 Me.lsbIds.AddItem "Streams", 1
 lsbUserDecisions.AddItem "", 0
 Me.lsbIds.AddItem "Culverts", 2
 lsbUserDecisions.AddItem "", 0
 Me.lsbIds.AddItem "DEM", 3
 lsbUserDecisions.AddItem "", 0

 m_iCurrentIndex = 0
 lsbIds.Selected(m_iCurrentIndex) = True
 'check by default
 'ckbCopy.Value = vbChecked
 ckbCopy.Enabled = False
End Sub
Public Sub AddLayers(pMap As IMap, ByRef pStartButt As clsStart)
 Set m_pParent = pStartButt
 Dim counter As Long
 For counter = 0 To pMap.LayerCount - 1
 lsbAvailable.AddItem pMap.Layer(counter).Name
 Next counter
End Sub
Private Function ValidateLayers() As Boolean
 Dim counter As Integer
 'will verify ONLY the required fields 0 - 3
 For counter = 0 To lsbUserDecisions.ListCount - 1
 If "" = lsbUserDecisions.List(counter) Then
 ValidateLayers = False
 Exit Function
 End If
 Next counter
 ValidateLayers = True
End Function

Public Property Get CompletedSuccessfuly() As Boolean
 CompletedSuccessfuly = m_bSucces
End Property

Private Sub lsbAvailable_DblClick()
 If True = btnAdd.Enabled Then PromoteLayer
End Sub

Private Sub PromoteLayer()
 If lsbAvailable.ListIndex > -1 Then
 lsbUserDecisions.List(m_iCurrentIndex) =
lsbAvailable.List(lsbAvailable.ListIndex)
 lsbAvailable.RemoveItem (lsbAvailable.ListIndex)

 btnAdd.Enabled = False
 btnRemove.Enabled = True
 End If
End Sub

103

MODULE – ConnectFnct (ConnectFnct.bas)

Option Explicit

'returns the value if unique positive, -1 if no children, -100 if
multiple children.
Public Function CheckUniqueChild(lChildren() As Long) As Long
 Dim i As Integer
 Dim iPosValues As Integer
 iPosValues = 0
 Dim lUniqueChild As Long
 lUniqueChild = -1

 For i = LBound(lChildren()) To UBound(lChildren())
 If lChildren(i) > 0 Then
 iPosValues = iPosValues + 1
 lUniqueChild = lChildren(i)
 End If
 Next i

 If iPosValues = 0 Then
 CheckUniqueChild = -1 'no children
 Exit Function
 ElseIf iPosValues = 1 Then 'unique child return value
 CheckUniqueChild = lUniqueChild
 Exit Function
 Else
 CheckUniqueChild = -100
 End If
End Function

'has to run inside edit session
Public Sub ReuniteChild(pSegments() As IFeature, lP1x As Long, lP2x As
Long, _
 lP3x As Long, lChx As Long, lIdx As Long)

 'pSegments is an array that holds the parents first and the child as
last element
 Dim pChild As IFeature
 Set pChild = pSegments(UBound(pSegments))
 If Not pChild Is Nothing Then
 Dim i As Integer
 For i = 0 To UBound(pSegments) - 1
 pSegments(i).Value(lChx) = pChild.Value(lIdx)
 pSegments(i).Store
 Next i
 Dim pIndexes(2) As Long

 pIndexes(0) = lP1x
 pIndexes(1) = lP2x
 pIndexes(2) = lP3x
 Dim iStop As Integer
 iStop = 2
 If UBound(pSegments) - 1 < iStop Then iStop = UBound(pSegments) - 1
 For i = 0 To iStop
 pChild.Value(pIndexes(i)) = pSegments(i).Value(lIdx)
 pChild.Store
 Next i
 End If

104

 'release memory
 Set pChild = Nothing
End Sub

'will follow upstream from this segment setting all to the culvert this
segment drains to
Public Sub SetUpstream(ByRef lCulNo As Long, ByRef pRoad As
IFeatureLayer, ByRef pFeat As IFeature, ByRef lP1x As Long, _
 ByRef lP2x As Long, ByRef lP3x As Long, ByRef lCx)
 'get parents
 Dim pParArray(2) As Long
 pParArray(0) = pFeat.Value(lP1x)
 pParArray(1) = pFeat.Value(lP2x)
 pParArray(2) = pFeat.Value(lP3x)

 Dim i As Integer
 For i = 0 To 2
 If pParArray(i) > 0 Then
 Dim pFilter As IQueryFilter
 Set pFilter = New QueryFilter
 pFilter.WhereClause = "RSAID = " & pParArray(i)
 Dim pPar As IFeature
 Dim pFeatCur As IFeatureCursor
 Set pFeatCur = pRoad.Search(pFilter, False)
 Set pPar = pFeatCur.NextFeature
 pPar.Value(lCx) = lCulNo
 pPar.Store
 SetUpstream lCulNo, pRoad, pPar, lP1x, lP2x, lP3x, lCx

 'release memory
 Set pFilter = Nothing
 Set pPar = Nothing
 Set pFeatCur = Nothing
 End If
 Next i
 End Sub

'changes the parent that indetifies to old parent to the given new
parent
Public Sub ChangeOneParent(pLayer As IFeatureLayer, lChildId As Long,
lOldParentId As Long, lNewParentId As Long, _
 lP1x As Long, lP2x As Long, lP3x As Long,
lIdx As Long)
 'find the feature that is the given child lChildId
 Dim pFeatCur As IFeatureCursor
 Dim pFilter As IQueryFilter
 Set pFilter = New QueryFilter
 pFilter.WhereClause = "RSAID = " & lChildId
 Set pFeatCur = pLayer.Search(pFilter, False)
 Dim pChildFeat As IFeature
 Set pChildFeat = pFeatCur.NextFeature
 'find the parent that is lOldParent and change to lNewParent
 If Not pChildFeat Is Nothing Then
 If pChildFeat.Value(lP1x) = lOldParentId Then
 pChildFeat.Value(lP1x) = lNewParentId
 pChildFeat.Store
 Exit Sub
 ElseIf pChildFeat.Value(lP2x) = lOldParentId Then

105

 pChildFeat.Value(lP2x) = lNewParentId
 pChildFeat.Store
 Exit Sub
 ElseIf pChildFeat.Value(lP3x) = lOldParentId Then
 pChildFeat.Value(lP3x) = lNewParentId
 pChildFeat.Store
 End If
 End If

 'release memory
 Set pFeatCur = Nothing
 Set pFilter = Nothing
 Set pChildFeat = Nothing
End Sub
'returns false if no parents were found for this particular roadfeature
Public Function HasParents(pFeat As IFeature, lP1x As Long, lP2x As
Long, _
 lP3x As Long) As Boolean
If pFeat.Value(lP1x) <> -1 Then
 HasParents = True
 Exit Function
ElseIf pFeat.Value(lP2x) <> -1 Then
 HasParents = True
 Exit Function
ElseIf pFeat.Value(lP3x) <> -1 Then
 HasParents = True
 Exit Function
End If
HasParents = False
End Function
'changes parents of this child to -1 and the child to no parents
Public Sub SevereChild(pChild As IFeature, pLayer As IFeatureLayer, _
 lP1x, lP2x, lP3x, lChx)
 'HAS TO RUN INSIDE EDIT SESION
 Dim pFilter As IQueryFilter
 Set pFilter = New QueryFilter
 Dim pCursor As IFeatureCursor
 Dim pParent As IFeature
 Dim lIndexes(2) As Long
 lIndexes(0) = lP1x
 lIndexes(1) = lP2x
 lIndexes(2) = lP3x
 Dim i As Integer
 Dim par As Long
 For i = 0 To 2
 par = pChild.Value(lIndexes(i))
 If par <> -1 Then
 pFilter.WhereClause = "RSAID = " & par
 Set pCursor = pLayer.Search(pFilter, False)
 Set pParent = pCursor.NextFeature
 If Not pParent Is Nothing Then
 pParent.Value(lChx) = -1
 pParent.Store
 End If
 End If
 Next i

 pChild.Value(lP1x) = -1
 pChild.Value(lP2x) = -1

106

 pChild.Value(lP3x) = -1
 pChild.Store

 'clean up
 Set pFilter = Nothing
 Set pCursor = Nothing
 Set pParent = Nothing
End Sub
'return the an array of features that intersect with the point with the
upper segmnent
'as first element and the lower segment as the last
Public Function IdentifyUpperLower(pLayer As IFeatureLayer, pPoint As
IPoint, _
 lTpx As Long) As IFeature()
 On Error GoTo erh

 'create a selection set with all feature that touch with point
 Dim pUpperLower() As IFeature
 Dim pFilter As ISpatialFilter
 Set pFilter = New SpatialFilter
 Set pFilter.Geometry = pPoint
 pFilter.SpatialRel = esriSpatialRelTouches
 Dim pSelSet As ISelectionSet
 Dim pDataset As IDataset
 Set pDataset = pLayer
 Set pSelSet = pLayer.FeatureClass.Select(pFilter,
esriSelectionTypeHybrid, _
 esriSelectionOptionNormal,
pDataset.Workspace)
 'get cursor into all these elements of the selection set
 Dim pCursor As IFeatureCursor
 pSelSet.Search Nothing, False, pCursor

 'fill up a collection of all these segments
 Dim colSegments As New Collection
 Dim pSwap As IFeature
 Set pSwap = pCursor.NextFeature
 Do While Not pSwap Is Nothing
 colSegments.Add pSwap
 'MsgBox "point touches " & pSwap.OID
 Set pSwap = pCursor.NextFeature
 Loop
 'find Segments that have pPoint as their geometric to point (=
parents)
 Dim colPar As New Collection
 Dim pPolyline As IPolyline
 Dim pElem As Variant
 If colSegments.count > 1 Then
 For Each pElem In colSegments
 Set pSwap = pElem
 Set pPolyline = pSwap.Shape
 If Util.ComparePointLocations(pPolyline.ToPoint, pPoint) Then
 colPar.Add pSwap
 'MsgBox "parent " & pSwap.OID
 End If
 Next
 Else 'one element means it can only be the child
 ReDim pUpperLower(0)
 Set pUpperLower(0) = colSegments(1)

107

 IdentifyUpperLower = pUpperLower
 GoTo CleanUp
 End If
 'find the child with a query filter on the parents "TOPT"
 'all parents should flow to same "TOPT" if flow geometry
 'has been maintained correctly
 Dim lToPt As Long
 Set pSwap = colPar(1)
 lToPt = pSwap.Value(lTpx)
 Dim pQFilter As IQueryFilter
 Set pQFilter = New QueryFilter
 pQFilter.WhereClause = "FROMPT = " & lToPt
 'pSwap should now be the child
 pSelSet.Search pQFilter, False, pCursor
 Set pSwap = pCursor.NextFeature
 'fill in the upperlower array with the parents first and the child as
last element
 Dim i As Long
 i = colPar.count
 ReDim pUpperLower(i)
 'load child
 Set pUpperLower(i) = pSwap
 'MsgBox "loaded child " & pSwap.OID & " at " & i
 'load parents
 i = 0
 For Each pElem In colPar
 Set pSwap = pElem
 Set pUpperLower(i) = pSwap
 i = i + 1
 Next
 IdentifyUpperLower = pUpperLower
 Set pQFilter = Nothing
CleanUp:
 Set pSwap = Nothing
 Set pPolyline = Nothing
 Set pFilter = Nothing
 Set pCursor = Nothing
 Set colSegments = Nothing
 Set colPar = Nothing
 Set pSelSet = Nothing
 Set pDataset = Nothing
 Exit Function
erh:
 MsgBox "error in identify upper/lower " & Error
End Function

Public Function SumUpSed(pFeatClass As IFeatureClass, lSedFieldIndex As
Long, _
 sCulFieldName As String, lCulvert As Long) As
Double
 On Error GoTo erh

 Dim dTotalSed As Double
 Dim pFilter As IQueryFilter
 Set pFilter = New QueryFilter
 pFilter.WhereClause = sCulFieldName & " = " & lCulvert
 Dim pCursor As IFeatureCursor
 Set pCursor = pFeatClass.Search(pFilter, False)
 Dim pFeat As IFeature

108

 Set pFeat = pCursor.NextFeature
 Do While Not pFeat Is Nothing
 dTotalSed = dTotalSed + pFeat.Value(lSedFieldIndex)
 Set pFeat = pCursor.NextFeature
 Loop

 SumUpSed = dTotalSed
 Exit Function

 'release memory
 Set pFilter = Nothing
 Set pCursor = Nothing
 Set pFeat = Nothing
erh:
 MsgBox "error in SumUpSed " & Error
End Function

Public Sub SumAttrib(pReceiver As IFeature, pContributor As IFeature,
lFieldIndex As Long)
 Dim dValue As Double
 dValue = pReceiver.Value(lFieldIndex)
 pReceiver.Value(lFieldIndex) = dValue +
pContributor.Value(lFieldIndex)
End Sub

Public Sub SplitAttrib(pReceiver As IFeature, pOriginal As IFeature,
lFieldIndex As Long)
 'Receiver is blank. has no value for this attrib
 'orig will receive the difference after splitting attrib
 Dim pRecPoly As IPolyline, pOrigPoly As IPolyline
 Set pRecPoly = pReceiver.Shape
 Set pOrigPoly = pOriginal.Shape
 Dim dVal As Double
 dVal = pOriginal.Value(lFieldIndex)
 pReceiver.Value(lFieldIndex) = dVal * pRecPoly.Length /
pOrigPoly.Length
 pOriginal.Value(lFieldIndex) = dVal - pReceiver.Value(lFieldIndex)

 'release memory
 Set pRecPoly = Nothing
 Set pOrigPoly = Nothing
End Sub
'inserts a node in the FROMPT or TOPT field of an RSA road table
'if the given point is on one of the line ends
Public Function DisconnectNodes(pLineFeature As IFeature, _
 pPointFeature As IFeature, _
 lFpx As Long, _
 lTpx As Long, _
 lMaxPointId As Long) As Long
 Dim pPolyline As IPolyline
 Dim pCompPoint As IPoint
 Dim pEndPoint As IPoint

 'identify end that touches
 Set pPolyline = pLineFeature.Shape
 Set pCompPoint = pPointFeature.Shape
 'try the "from" end first
 Set pEndPoint = pPolyline.FromPoint
 If Util.ComparePointLocations(pCompPoint, pEndPoint) Then

109

 pLineFeature.Value(lFpx) = lMaxPointId + 1 ' set flow "FROM" to this
point
 pLineFeature.Store
 lMaxPointId = lMaxPointId + 1
 End If
 'try the "to" end
 Set pEndPoint = pPolyline.ToPoint
 If Util.ComparePointLocations(pCompPoint, pEndPoint) Then
 pLineFeature.Value(lTpx) = lMaxPointId + 1 ' set flow "TO" to this
point
 pLineFeature.Store
 lMaxPointId = lMaxPointId + 1
 End If

 DisconnectNodes = lMaxPointId
End Function

MODULE – EnforceFnct (EnforceFnct.bas)

Option Explicit

'call this within an edit session
Public Sub SimplifyPaths(pFeatClass As IFeatureClass)
 On Error GoTo erh

 Dim pCursor As IFeatureCursor
 Set pCursor = pFeatClass.Search(Nothing, False)
 Dim pFeat As IFeature
 Set pFeat = pCursor.NextFeature
 Dim pPolyline As IPolyline
 Dim pGeoColl As IGeometryCollection
 Dim pNewFeat As IFeature
 Dim pNewPolyline As IPolyline
 Dim pNewGeoColl As IGeometryCollection
 Dim i As Integer

 Do While Not pFeat Is Nothing
 Set pPolyline = pFeat.Shape
 Set pGeoColl = pPolyline
 If pGeoColl.GeometryCount > 1 Then
 For i = 0 To pGeoColl.GeometryCount - 1
 'create a new polyline from each path
 Set pNewPolyline = New Polyline
 Set pNewGeoColl = pNewPolyline
 pNewGeoColl.AddGeometry pGeoColl.Geometry(i)
 'create a polyline for each path
 Set pNewFeat = pFeatClass.CreateFeature
 Util.CopyAllAtributes pFeat, pNewFeat
 Set pNewFeat.Shape = pNewPolyline
 pNewFeat.Store
 Next i
 'remove the initial polyline
 pFeat.Delete
 End If
 Set pFeat = pCursor.NextFeature
 Loop

110

 'release memory
 Set pCursor = Nothing
 Set pFeat = Nothing
 Set pPolyline = Nothing
 Set pGeoColl = Nothing
 Set pNewFeat = Nothing
 Set pNewPolyline = Nothing
 Set pNewGeoColl = Nothing

 Exit Sub
erh:
 MsgBox "error in SimplifyPaths " & Error
End Sub

'run this within an edit session
Public Sub ForceEndConnectivity(pFeatClass As IFeatureClass)
 On Error GoTo erh

 Dim pCursor As IFeatureCursor
 Set pCursor = pFeatClass.Search(Nothing, False)
 Dim pFeat As IFeature
 Set pFeat = pCursor.NextFeature
 Dim pPolyline As IPolyline
 Dim pSpFilter As ISpatialFilter
 Set pSpFilter = New SpatialFilter
 pSpFilter.SpatialRel = esriSpatialRelWithin
 Dim pSplitCursor As IFeatureCursor

 Do While Not pFeat Is Nothing
 Set pPolyline = pFeat.Shape

 Set pSpFilter.Geometry = pPolyline.FromPoint
 Set pSplitCursor = pFeatClass.Search(pSpFilter, False)
 SplitSeachAtPoint pSplitCursor, pPolyline.FromPoint, pFeatClass

 Set pSpFilter.Geometry = pPolyline.ToPoint
 Set pSplitCursor = pFeatClass.Search(pSpFilter, False)
 SplitSeachAtPoint pSplitCursor, pPolyline.ToPoint, pFeatClass

 Set pFeat = pCursor.NextFeature
 Loop

 Exit Sub
erh:
 MsgBox "error in ForceEndConnectivity " & Error
End Sub

'Run inside edit session
Private Sub SplitSeachAtPoint(pCursor As IFeatureCursor, pPoint As
IPoint, _
 pFClass As IFeatureClass)
 On Error GoTo erh

 Dim pFeat As IFeature
 Set pFeat = pCursor.NextFeature
 Dim pPieces(1) As IPolyline
 Dim pNewFeat As IFeature
 Do While Not pFeat Is Nothing
 Util.CutPolylineAtPoint pFeat.Shape, pPoint, pPieces

111

 'create new features
 If Not pPieces(0) Is Nothing Then
 Set pNewFeat = pFClass.CreateFeature
 Util.CopyAllAtributes pFeat, pNewFeat
 Set pNewFeat.Shape = pPieces(0)
 pNewFeat.Store
 End If
 If Not pPieces(1) Is Nothing Then
 Set pNewFeat = pFClass.CreateFeature
 Util.CopyAllAtributes pFeat, pNewFeat
 Set pNewFeat.Shape = pPieces(1)
 pNewFeat.Store
 End If
 'delete original feature
 pFeat.Delete
 'iterate
 Set pFeat = pCursor.NextFeature
 Loop
 'release memory
 Set pFeat = Nothing
 Set pNewFeat = Nothing

 Exit Sub
erh:
 MsgBox "error in SplitSeachAtpoint " & Error
End Sub

MODULE – ErrorHandling (ErrorHandling.bas)

Option Explicit
'
' FILE AUTOMATICALLY GENERATED BY ESRI ERROR HANDLER ADDIN
' DO NOT EDIT OR REMOVE THIS FILE FROM THE PROJECT
'
Dim pErrorLog As New ErrorHandlerUI.ErrorDialog

Private Sub DisplayVersion2Dialog(sProcedureName As String,
sErrDescription As String)
 Beep
 MsgBox "An error has occured in the application. Record the call
stack sequence" & vbCrLf & "and the description of the error." & vbCrLf
& vbCrLf & _
 "Error Call Stack Sequence " & vbCrLf & vbTab & sProcedureName
& vbCrLf & sErrDescription, vbExclamation + vbOKOnly, "Unexpected
Program Error"
End Sub

Private Sub DisplayVersion3Dialog(sProcedureName As String,
sErrDescription As String, parentHWND As Long, raiseException As
Boolean)
 Beep
 MsgBox "An error has occured in the application. Record the call
stack sequence" & vbCrLf & "and the description of the error." & vbCrLf
& vbCrLf & _
 "Error Call Stack Sequence " & vbCrLf & vbTab & sProcedureName
& vbCrLf & sErrDescription, vbExclamation + vbOKOnly, "Unexpected
Program Error"

112

End Sub

Private Sub DisplayVersion4Dialog(sProcedureName As String,
sErrDescription As String, parentHWND As Long)
 pErrorLog.AppendErrorText "Record Call Stack Sequence - Bottom line is
error line." & vbCrLf & vbCrLf & vbTab & sProcedureName & vbCrLf &
sErrDescription
 pErrorLog.Visible = True

End Sub

Public Sub HandleError(ByVal bTopProcedure As Boolean, _
 ByVal sProcedureName As String, _
 ByVal lErrNumber As Long, _
 ByVal sErrSource As String, _
 ByVal sErrDescription As String, _
 Optional ByVal version As Long = 1, _
 Optional ByVal parentHWND As Long = 0, _
 Optional ByVal reserved1 As Variant = 0, _
 Optional ByVal reserved2 As Variant = 0, _
 Optional ByVal reserved3 As Variant = 0)
 ' Generic Error handling Function - This function should be called
with
 ' the following Arguments
 '
 ' Boolean -in- True if called from a top level procedure - Event /
Method / Property
 ' String -in- Name of function called from
 ' Long -in- Error Number (retrieved from Err object)
 ' String -in- Error Source (retrieved from Err object)
 ' String -in- Error Description (retrieved from Err object)
 ' Long -in- Version of Function (optional Default 1)
 ' parentHWND -in- Parent Hwnd for error dialogs, NULL is valid
 ' reserved1 -in-
 ' reserved2 -in-
 ' reserved3 -in-

 ' Clear the error object
 Err.Clear

 ' Static variable used to control the call stack formatting
 Static entered As Boolean

 If (bTopProcedure) Then
 ' Top most procedure in call stack so report error to user
 ' Via a dialog
 If (Not entered) Then
 sErrDescription = vbCrLf & "Error Number " & vbCrLf & vbTab &
CStr(lErrNumber) & vbCrLf & "Description" & vbCrLf & vbTab &
sErrDescription & vbCrLf & vbCrLf
 End If
 entered = False
 If (version = 4) Then
 DisplayVersion4Dialog sProcedureName, sErrDescription, parentHWND
 ElseIf (version = 3) Then
 Dim raiseError As Boolean

113

 DisplayVersion3Dialog sProcedureName, sErrDescription, parentHWND,
raiseError
 If (raiseError) Then Err.Raise lErrNumber, sErrSource, vbTab &
sProcedureName & vbCrLf & sErrDescription
 ElseIf (version = 2) Then
 DisplayVersion2Dialog sProcedureName, sErrDescription
 Else
 Beep
 MsgBox "An error has occured in the application. Record the call
stack sequence" & vbCrLf & "and the description of the error." & vbCrLf
& vbCrLf & _
 "Error Call Stack Sequence " & vbCrLf & vbTab &
sProcedureName & vbCrLf & sErrDescription, vbExclamation + vbOKOnly,
"Unexpected Program Error"
 End If
 Else
 ' An error has occured but we are not at the top of the call stack
 ' so append the callstack and raise another error
 If (Not entered) Then sErrDescription = vbCrLf & "Error Number " &
vbCrLf & vbTab & CStr(lErrNumber) & vbCrLf & "Description" & vbCrLf &
vbTab & sErrDescription & vbCrLf & vbCrLf
 entered = True
 Err.Raise lErrNumber, sErrSource, vbTab & sProcedureName & vbCrLf &
sErrDescription
 End If
End Sub

Public Function GetErrorLineNumberString(ByVal lLineNumber As Long) As
String
 ' Test the line number if it is non zero create a string
 If (lLineNumber <> 0) Then GetErrorLineNumberString = "Line : " &
lLineNumber
End Function

MODULE – Util (RSAUtil.bas)

Option Explicit

Public Function FindOneFeature(pFeatClass As IFeatureClass, lFName As
String, _
 lValue As Long) As IFeature
 Dim pFilter As IQueryFilter
 Set pFilter = New QueryFilter
 pFilter.WhereClause = lFName & " = " & lValue
 Dim pCursor As IFeatureCursor
 Set pCursor = pFeatClass.Search(pFilter, False)
 Set FindOneFeature = pCursor.NextFeature

 Set pFilter = Nothing
 Set pCursor = Nothing
End Function

Public Function CreateRSAFields(pRoadClass As IFeatureClass, _
 pCulvClass As IFeatureClass) As Boolean
 Dim pField As IField
 Dim pFieldEdit As IFieldEdit
 On Error GoTo ErrorHandler

114

 Set pField = New Field
 Set pFieldEdit = pField

 With pFieldEdit
 'integer fields
 .Name = "RSAID"
 .Type = esriFieldTypeInteger
 AddNonExistingField pField, pRoadClass
 AddNonExistingField pField, pCulvClass

 .Name = "FROMPT"
 AddNonExistingField pField, pRoadClass

 .Name = "TOPT"
 AddNonExistingField pField, pRoadClass

 .Name = "PAR1"
 AddNonExistingField pField, pRoadClass

 .Name = "PAR2"
 AddNonExistingField pField, pRoadClass

 .Name = "PAR3"
 AddNonExistingField pField, pRoadClass

 .Name = "CHILD"
 AddNonExistingField pField, pRoadClass

 .Name = "CULV"
 AddNonExistingField pField, pRoadClass

 .Name = "REMCD"
 AddNonExistingField pField, pCulvClass

 'fields of type double
 .Type = esriFieldTypeDouble
 .Name = "SEDPROD"
 AddNonExistingField pField, pRoadClass

 .Name = "DELPOT"
 AddNonExistingField pField, pCulvClass

 .Name = "SED"
 AddNonExistingField pField, pCulvClass
 End With
 CreateRSAFields = True
 Exit Function

ErrorHandler:
 MsgBox "if editor is on please turn off first"
 CreateRSAFields = False
End Function

Public Sub AddNonExistingField(pNewField As IField, pFeatureClass As
IFeatureClass)
 Dim pos As Long
 pos = pFeatureClass.FindField(pNewField.Name)
 If pos > -1 Then
 Dim pOldField As IField

115

 Set pOldField = pFeatureClass.Fields.Field(pos)
 pFeatureClass.DeleteField pOldField
 End If
 pFeatureClass.AddField pNewField
End Sub

Public Function GetFieldIndexes(pFeatClass As IFeatureClass, sType As
String) As Long()
 Dim lIndexes() As Long
 If StrComp(sType, "road", vbTextCompare) = 0 Then
 ReDim lIndexes(10)
 lIndexes(0) = pFeatClass.FindField("RSAID")
 lIndexes(1) = pFeatClass.FindField("ZFROM")
 lIndexes(2) = pFeatClass.FindField("ZTO")
 lIndexes(3) = pFeatClass.FindField("FROMPT")
 lIndexes(4) = pFeatClass.FindField("TOPT")
 lIndexes(5) = pFeatClass.FindField("PAR1")
 lIndexes(6) = pFeatClass.FindField("PAR2")
 lIndexes(7) = pFeatClass.FindField("PAR3")
 lIndexes(8) = pFeatClass.FindField("CHILD")
 lIndexes(9) = pFeatClass.FindField("CULV")
 lIndexes(10) = pFeatClass.FindField("SEDPROD")
 ElseIf StrComp(sType, "culvert", vbTextCompare) = 0 Then
 ReDim lIndexes(3)
 lIndexes(0) = pFeatClass.FindField("RSAID")
 lIndexes(1) = pFeatClass.FindField("REMCD")
 lIndexes(2) = pFeatClass.FindField("DELPOT")
 lIndexes(3) = pFeatClass.FindField("SED")
 End If
 GetFieldIndexes = lIndexes
End Function
'returns a containing the cell value.
'if anything goes wrong returns nodata.
Public Function GetCellValue(pRasterLayer As IRasterLayer, pPoint As
IPoint) As String
 Dim pRIDObj As IRasterIdentifyObj
 Dim pIdentify As IIdentify
 Dim pIDArray As IArray
 Dim pNewPoint As IPoint
 Set pNewPoint = New Point
 pNewPoint.X = pPoint.X
 pNewPoint.Y = pPoint.Y
 Set pIdentify = pRasterLayer
 Set pIDArray = pIdentify.Identify(pNewPoint)
 If Not pIDArray Is Nothing Then
 Set pRIDObj = pIDArray.Element(0)
 GetCellValue = pRIDObj.Name
 Else
 GetCellValue = "NoData"
 End If
 'clean up
 Set pNewPoint = Nothing
 Set pIDArray = Nothing
 Set pIdentify = Nothing
 Set pRIDObj = Nothing
End Function
'returns an array of two polylines with the upper segment at position 0
Public Function CutPolylineAtPoint(pInputLine As IPolyline, pSplitPoint
As IPoint, _

116

 ByRef pOutputLines() As IPolyline)
 Dim dDistAlong As Double
 Dim dDistFrom As Double
 Dim pPoint As IPoint

 pInputLine.QueryPointAndDistance esriNoExtension, pSplitPoint, False,
pPoint, _
 dDistAlong, dDistFrom, False
 'the segment that starts at "FROM" goes at index 0
 pInputLine.GetSubcurve 0#, dDistAlong, False, pOutputLines(0)
 'the segment that ends at "TO" goes at index 1
 pInputLine.GetSubcurve dDistAlong, pInputLine.Length, False,
pOutputLines(1)

 Set pPoint = Nothing
End Function

Public Function GetMaxValue(pFClass As IFeatureClass, lIdx As Long) As
Long
 'select all
 Dim pCursor As IFeatureCursor
 Set pCursor = pFClass.Search(Nothing, False)
 'go through all
 Dim pFeat As IFeature
 Dim lValue As Long, lMaxValue As Long
 lMaxValue = -2147483648#
 Set pFeat = pCursor.NextFeature
 Do While Not pFeat Is Nothing
 lValue = pFeat.Value(lIdx)
 If lValue > lMaxValue Then
 lMaxValue = lValue
 End If
 Set pFeat = pCursor.NextFeature
 Loop
 GetMaxValue = lMaxValue

 'release memory
 Set pCursor = Nothing
 Set pFeat = Nothing
End Function

Public Function GetMaxOfFields(pFClass As IFeatureClass, lIdx1 As Long,
lIdx2 As Long) As Long
 'get the maximum existing point number in the road table
 Dim lMaxField As Long
 Dim lMax1 As Long
 lMax1 = GetMaxValue(pFClass, lIdx1)
 'when there are no features set the lCurId to 1
 If lMax1 = -2147483648# Then
 lMax1 = 0
 End If
 Debug.Print "max FP id is" & lMax1
 Dim lMax2 As Long
 lMax2 = GetMaxValue(pFClass, lIdx2)
 If lMax2 = -2147483648# Then
 lMax2 = 0
 End If
 Debug.Print "max TP id is" & lMax2
 If lMax1 >= lMax2 Then

117

 lMaxField = lMax1
 Else: lMaxField = lMax2
 End If
 Debug.Print "max point id is " & lMaxField
 GetMaxOfFields = lMaxField
End Function
'changes the geometry of the given point feature according to
'the rules of the given snap agent
'has to run inside an edit session
Public Sub MovePointFeatToSnapLocation(pPointFeat As IFeature, _
 pSnapAgent As ISnapAgent, _
 tolerance As Double)
 Dim pPoint As IPoint
 Set pPoint = pPointFeat.Shape

 'MsgBox "trying to snap culvert"

 pSnapAgent.Snap Nothing, pPoint, tolerance

 'MsgBox "snapped successfuly"

 Set pPointFeat.Shape = pPoint
 pPointFeat.Store

End Sub
Public Function ComparePointLocations(pPoint1 As IPoint, pPoint2 As
IPoint) As Boolean
 Dim c_tol As Double
 c_tol = 0.000000001
 If (Math.Abs(pPoint1.X - pPoint2.X) <= c_tol) And (Math.Abs(pPoint1.Y
- pPoint2.Y) <= c_tol) Then
 ComparePointLocations = True
 Exit Function
 End If
 ComparePointLocations = False
End Function

Public Function VerifyName(pLayer As ILayer) As String
 If pLayer Is Nothing Then
 VerifyName = ""
 Exit Function
 End If
 VerifyName = pLayer.Name
End Function

Public Function ExistsLayer(sName As String, ByRef pLayer As ILayer, _
 pDoc As IMxDocument) As Boolean
 Dim i As Integer
 For i = 0 To pDoc.FocusMap.LayerCount - 1
 If StrComp(sName, pDoc.FocusMap.Layer(i).Name, vbBinaryCompare) = 0
Then
 Set pLayer = pDoc.FocusMap.Layer(i)
 ExistsLayer = True
 Exit Function
 End If
 Next i
 Set pLayer = Nothing
 ExistsLayer = False
End Function

118

Public Sub AddRasterLayerToComboBox(cboBox As ComboBox, pMap As IMap)
 On Error GoTo erh
 cboBox.Clear
 Dim iLyrIndex As Long
 Dim pLyr As ILayer
 ' Add raster layers into Combobox
 Dim iLayerCount As Integer
 iLayerCount = pMap.LayerCount
 If iLayerCount > 0 Then
 cboBox.Enabled = True
 For iLyrIndex = 0 To iLayerCount - 1
 Set pLyr = pMap.Layer(iLyrIndex)
 If (TypeOf pLyr Is IRasterLayer) Then
 cboBox.AddItem pLyr.Name
 cboBox.ItemData(cboBox.ListCount - 1) = iLyrIndex
 End If
 Next iLyrIndex
 If (cboBox.ListCount > 0) Then
 cboBox.ListIndex = 0
 cboBox.Text = pMap.Layer(cboBox.ItemData(0)).Name
 End If
 End If
 Exit Sub
erh:
 MsgBox "Add Raster Layer to ComboBox:" & Err.Description
End Sub

Public Sub AddFeatureLayerToComboBox(cboBox As ComboBox, pMap As IMap)
 On Error GoTo erh
 cboBox.Clear
 Dim iLyrIndex As Long
 Dim pLyr As ILayer
 ' Add feature layers into Combobox
 Dim iLayerCount As Integer
 iLayerCount = pMap.LayerCount
 If iLayerCount > 0 Then
 cboBox.Enabled = True
 For iLyrIndex = 0 To iLayerCount - 1
 Set pLyr = pMap.Layer(iLyrIndex)
 If (TypeOf pLyr Is IFeatureLayer) Then
 cboBox.AddItem pLyr.Name
 cboBox.ItemData(cboBox.ListCount - 1) = iLyrIndex
 End If
 Next iLyrIndex
 If (cboBox.ListCount > 0) Then
 cboBox.ListIndex = 0
 cboBox.Text = pMap.Layer(cboBox.ItemData(0)).Name
 End If
 End If
 Exit Sub
erh:
 MsgBox "Add Feature Layer to ComboBox:" & Err.Description
End Sub

Public Function AddInputFromGxBrowser(cboInput As ComboBox, frm As Form,
_
 FilterRaster As Boolean) As
IDataset

119

 On Error GoTo erh
 Dim pGxObject As IGxObject
 Dim pFilter As IGxObjectFilter
 Dim pMiniBrowser As IGxDialog
 Dim pEnumGxObject As IEnumGxObject

 Set pMiniBrowser = New GxDialog
 If FilterRaster Then
 Set pFilter = New GxFilterRasterDatasets
 Else
 Set pFilter = New GxFilterFeatureClasses
 End If

 Set pMiniBrowser.ObjectFilter = pFilter
 pMiniBrowser.Title = "Select Dataset"

 If (pMiniBrowser.DoModalOpen(frm.hwnd, pEnumGxObject)) Then
 Set pGxObject = pEnumGxObject.Next
 Dim pGxDataset As IGxDataset
 Set pGxDataset = pGxObject
 Dim pDataset As esriCore.IDataset
 Set pDataset = pGxDataset.Dataset
 cboInput.Clear
 cboInput.AddItem pDataset.Name
 cboInput.ItemData(cboInput.ListCount - 1) = -1 ' -1 indicates
browsed data, not map layer
 cboInput.ListIndex = 0
 End If
 Set AddInputFromGxBrowser = pDataset
 ' move the focus off this command so OK or Cancel can be default if
'Enter' hit
' Dim c As Control
' For Each c In frm.Controls
' If (c.TabIndex = cboInput.TabIndex + 1) Then
' c.SetFocus
' Exit For
' End If
' Next
 Set pGxObject = Nothing
 Set pMiniBrowser = Nothing
 Exit Function
erh:
 MsgBox "AddInputfromBrowser:" & Err.Description
End Function

Public Function FindFeatureXPoint(pFeatClass As IFeatureClass, pPoint As
IPoint) As IFeature
 Dim pSpatialFilter As ISpatialFilter
 Dim pCursor As IFeatureCursor
 Set pSpatialFilter = New SpatialFilter
 Set pSpatialFilter.Geometry = pPoint
 pSpatialFilter.SpatialRel = esriSpatialRelIntersects
 Set pCursor = pFeatClass.Search(pSpatialFilter, False)
 Set FindFeatureXPoint = pCursor.NextFeature

 Set pCursor = Nothing
 Set pSpatialFilter = Nothing
End Function

120

Public Sub CopyAllAtributes(pOriginal As IFeature, pCopy As IFeature)
 Dim pFields As IFields
 Set pFields = pOriginal.Fields
 Dim i As Integer
 Dim fieldIndex As Long
 Dim fieldName As String
 For i = 0 To pFields.FieldCount - 1
 If pFields.Field(i).Editable Then
 fieldIndex = pFields.FindField(pFields.Field(i).Name)
 pCopy.Value(fieldIndex) = pOriginal.Value(fieldIndex)
 pCopy.Store
 End If
 Next i
End Sub

Public Sub CopyAllNonRSAtributes(pOriginal As IFeature, pCopy As
IFeature, _
 lRSAIndexes() As Long, shapeName As
String)
 Dim pFields As IFields
 Set pFields = pOriginal.Fields
 Dim i As Integer, j As Integer
 Dim fieldIndex As Long
 Dim fieldName As String
 For i = 0 To pFields.FieldCount - 1
 If Not IsInArray(i, lRSAIndexes) And _
 StrComp(pFields.Field(i).Name, shapeName, vbBinaryCompare) <> 0 Then

 If pFields.Field(i).Editable Then
 fieldIndex = pFields.FindField(pFields.Field(i).Name)
 pCopy.Value(fieldIndex) = pOriginal.Value(fieldIndex)
 pCopy.Store
 End If

 End If
 Next i
End Sub
Private Function IsInArray(lValue As Integer, lComp() As Long) As
Boolean
 Dim i As Integer
 For i = LBound(lComp) To UBound(lComp)
 If lComp(i) = lValue Then
 IsInArray = True
 Exit Function
 End If
 Next i
 IsInArray = False
End Function

Public Function FindAllFeaturesXPoint(pFeatClass As IFeatureClass,
pPoint As IPoint) As IFeature()
 On Error GoTo erh
 Dim pSpatialFilter As ISpatialFilter
 Dim pCursor As IFeatureCursor
 Set pSpatialFilter = New SpatialFilter
 Set pSpatialFilter.Geometry = pPoint
 pSpatialFilter.SpatialRel = esriSpatialRelIntersects
 Set pCursor = pFeatClass.Search(pSpatialFilter, False)
 Dim pFeature As IFeature

121

 ReDim pFeat(0) As IFeature
 Set pFeature = pCursor.NextFeature
 Set pFeat(0) = pFeature
 Set pFeature = pCursor.NextFeature
 Do While Not pFeature Is Nothing
 ReDim Preserve pFeat(UBound(pFeat) + 1)
 Set pFeat(UBound(pFeat)) = pFeature
 Set pFeature = pCursor.NextFeature
 Loop
 FindAllFeaturesXPoint = pFeat

 Set pCursor = Nothing
 Set pSpatialFilter = Nothing
 Exit Function
erh:
 MsgBox "error in find all features x point " & Error
End Function

Public Function FindAllFeaturesNearPoint(pFeatureClass As IFeatureClass,
_
 pPoint As IPoint, dtolerance As Double)
As IFeature()
 On Error GoTo erh

 Dim pSpatialFilter As ISpatialFilter
 Dim pCursor As IFeatureCursor
 'expand point's envelope
 Dim pEnv As IEnvelope
 Set pEnv = pPoint.Envelope
 pEnv.Expand 1, 1, False
 pEnv.Expand dtolerance, dtolerance, True

 Set pSpatialFilter = New SpatialFilter
 Set pSpatialFilter.Geometry = pEnv
 pSpatialFilter.SpatialRel = esriSpatialRelIntersects
 Set pCursor = pFeatureClass.Search(pSpatialFilter, False)
 Dim pFeature As IFeature
 ReDim pFeat(0) As IFeature
 Set pFeature = pCursor.NextFeature
 Set pFeat(0) = pFeature
 Set pFeature = pCursor.NextFeature
 Do While Not pFeature Is Nothing
 ReDim Preserve pFeat(UBound(pFeat) + 1)
 Set pFeat(UBound(pFeat)) = pFeature
 Set pFeature = pCursor.NextFeature
 Loop
 FindAllFeaturesNearPoint = pFeat

 Set pCursor = Nothing
 Set pSpatialFilter = Nothing
 Set pEnv = Nothing

 Exit Function
erh:
 MsgBox "error in find all features near point " & Error
End Function

Public Function MergePolylines(pBase As IPolyline, pAppendice As
IPolyline) As IPolyline

122

 Dim pTopoOp As ITopologicalOperator
 Set pTopoOp = pBase
 Set MergePolylines = pTopoOp.Union(pAppendice)
End Function

Public Function FindFeatureNearPoint(pFeatClass As IFeatureClass, pPoint
As IPoint, _
 dtolerance As Double) As IFeature
 Dim pSpatialFilter As ISpatialFilter
 Dim pCursor As IFeatureCursor
 'expand point's envelope
 Dim pEnv As IEnvelope
 Set pEnv = pPoint.Envelope
 pEnv.Expand 1, 1, False
 pEnv.Expand dtolerance, dtolerance, True

 Set pSpatialFilter = New SpatialFilter
 Set pSpatialFilter.Geometry = pEnv
 pSpatialFilter.SpatialRel = esriSpatialRelIntersects
 Set pCursor = pFeatClass.Search(pSpatialFilter, False)
 Set FindFeatureNearPoint = pCursor.NextFeature

 Set pCursor = Nothing
 Set pSpatialFilter = Nothing
 Set pEnv = Nothing
End Function

Public Function ExistsField(pFClass As IFeatureClass, sName As String)
As Boolean
 If Not pFClass Is Nothing Then
 Dim pFields As IFields
 Set pFields = pFClass.Fields
 Dim i As Integer
 For i = 0 To pFields.FieldCount - 1
 If StrComp(sName, pFields.Field(i).Name, vbBinaryCompare) = 0 Then
 ExistsField = False
 Exit Function
 End If
 Next i
 Set pFields = Nothing
 End If
 ExistsField = True
End Function

Public Function AddField(pFClass As IFeatureClass, sName As String, _
 fType As esriFieldType) As Boolean
 On Error GoTo erh
 Dim pField As IFieldEdit
 Set pField = New Field
 With pField
 pField.Name = sName
 pField.Type = fType
 End With
 pFClass.AddField pField
 AddField = True
 Exit Function
erh:
 AddField = False
 MsgBox "error in Util.AddField " & Error

123

End Function

Public Function SumValuesOnField(pFClass As IFeatureClass, lFIndex As
Long) As Double
 Dim dSum As Double
 Dim pCur As IFeatureCursor
 Set pCur = pFClass.Search(Nothing, False)
 Dim pFeat As IFeature
 Set pFeat = pCur.NextFeature
 Do While Not pFeat Is Nothing
 dSum = dSum + pFeat.Value(lFIndex)
 Set pFeat = pCur.NextFeature
 Loop
 SumValuesOnField = dSum
 Set pCur = Nothing
 Set pFeat = Nothing
End Function

Public Sub BreakPolyIntoPolySegments(pInPoly As IPolyline, pGeoColl As
IGeometryCollection)
 On Error GoTo erh
 Dim pPathColl As IGeometryCollection
 Set pPathColl = pInPoly
 Dim newPolyline As IPolyline
 Dim pNewPolyColl As IGeometryCollection
 Dim i As Integer
 For i = 0 To pPathColl.GeometryCount - 1
 Set newPolyline = New Polyline
 Set pNewPolyColl = newPolyline
 pNewPolyColl.AddGeometry pPathColl.Geometry(i)
 pGeoColl.AddGeometry newPolyline
 Next i

 Set pPathColl = Nothing
 Set newPolyline = Nothing
 Set pNewPolyColl = Nothing
 Exit Sub
erh:
 MsgBox "error in BreakPolyIntoPolySegments: " & Error
End Sub

Public Function CreateBoundarySnapAgent(pFClass As IFeatureClass) As
IFeatureSnapAgent
 Dim pFSnap As IFeatureSnapAgent
 Set pFSnap = New FeatureSnap
 With pFSnap
 Set .FeatureClass = pFClass
 .HitType = esriGeometryPartBoundary
 End With
 Set CreateBoundarySnapAgent = pFSnap
End Function

Public Function FindItemInListBox(lsbListBox As ListBox, _
 queryElem As String) As Integer
 Dim i As Integer
 For i = 0 To lsbListBox.ListCount - 1
 If StrComp(queryElem, lsbListBox.List(i)) = 0 Then
 FindItemInListBox = i
 Exit Function

124

 End If
 Next i
 FindItemInListBox = -1
End Function

Public Function FindItemInComboBox(cboComboBox As ComboBox, _
 queryElem As String) As Integer
 Dim i As Integer
 For i = 0 To cboComboBox.ListCount - 1
 If StrComp(queryElem, cboComboBox.List(i)) = 0 Then
 FindItemInComboBox = i
 Exit Function
 End If
 Next i
 FindItemInComboBox = -1
End Function

CLASS – clsCrtCulv (clsCrtCulvTask.cls)

Option Explicit

Implements ICommand
Implements ITool

Private m_pRoadLayer As IFeatureLayer
Private m_pCulvLayer As IFeatureLayer
Private m_pSedModel As ISedimentModel

Private m_pApp As IApplication
Private m_pBitmap As IPictureDisp
Private m_pMouseCur As IPictureDisp
Private m_pExt As clsExt
Private m_pWksEdit As IWorkspaceEdit
Private m_pRefresh As IInvalidArea

Private m_pDisplay As IDisplay
Private m_pSymbol As ISymbol
Private m_pNewPoint As IPoint
Private m_pSnapAgent As IFeatureSnapAgent

Private m_lRoadFieldInd() As Long
Private m_lCulFieldInd() As Long
' Variables used by the Error handler function - DO NOT REMOVE
Const c_ModuleFileName =
"C:\Evenflo\ThesisWorks\VBScripts\CrossDrainSpacer\clsCreateCulvertTask.
cls"

Private Sub Class_Initialize()
 On Error GoTo ErrorHandler

 'load the button image from the resource file
 Set m_pBitmap = LoadResPicture("Add", vbResBitmap)
 Set m_pMouseCur = LoadResPicture("Digitize", vbResCursor)

125

 Exit Sub
ErrorHandler:
 HandleError True, "Class_Initialize " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub Class_Terminate()
 On Error GoTo ErrorHandler

 Set m_pBitmap = Nothing
 Set m_pMouseCur = Nothing
 Set m_pExt = Nothing
 Set m_pApp = Nothing

 Exit Sub
ErrorHandler:
 HandleError True, "Class_Terminate " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 On Error GoTo ErrorHandler

 ICommand_Bitmap = m_pBitmap

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Bitmap " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Caption() As String
 On Error GoTo ErrorHandler

 ICommand_Caption = "AddCulv"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Caption " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Category() As String
 On Error GoTo ErrorHandler

 ICommand_Category = "Road Sediment Analyst"

 Exit Property
ErrorHandler:

126

 HandleError True, "ICommand_Category " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Checked() As Boolean
 On Error GoTo ErrorHandler

 'TODO: your implementation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Checked " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Enabled() As Boolean
 On Error GoTo ErrorHandler

 'check for certain properties in extension
 If Not m_pExt Is Nothing Then
 If m_pExt.IsStarted And m_pExt.IsAnalyzed Then
 ICommand_Enabled = True
 Else: ICommand_Enabled = False
 End If
 Else: ICommand_Enabled = False
 End If

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Enabled " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_HelpContextID() As Long
 On Error GoTo ErrorHandler

 'TODO: your implementation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_HelpContextID " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_HelpFile() As String
 On Error GoTo ErrorHandler

 'TODO: your implementation here

 Exit Property
ErrorHandler:

127

 HandleError True, "ICommand_HelpFile " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Message() As String
 On Error GoTo ErrorHandler

 ICommand_Message = "Add A Culvert And Calculate It's Sediment"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Message " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Name() As String
 On Error GoTo ErrorHandler

 ICommand_Name = "AddCulv"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Name " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Sub ICommand_OnClick()
 On Error GoTo ErrorHandler

 Dim pMxDoc As IMxDocument
 Set pMxDoc = m_pApp.Document
 Set m_pDisplay = pMxDoc.ActiveView.ScreenDisplay
 Set m_pRoadLayer = m_pExt.RoadLayer
 Set m_pCulvLayer = m_pExt.CulvLayer
 'get all needed field indexes
 m_lRoadFieldInd = Util.GetFieldIndexes(m_pRoadLayer.FeatureClass,
"road")
 m_lCulFieldInd = Util.GetFieldIndexes(m_pCulvLayer.FeatureClass,
"culvert")
 'get the sediment modeler
 Set m_pSedModel = m_pApp.FindExtensionByName(m_pExt.SedModelName)
 If m_pSedModel Is Nothing Then
 MsgBox "Could not find the specified sediment modeler!" & vbLf &
"Please check extensions."
 Exit Sub
 End If
 m_pSedModel.DistanceToStream = m_pExt.DistToStreamsLayer
 m_pSedModel.MaxDeliveryDistance = m_pExt.MaxDeliveryDistance
 'create new snap agent
 Set m_pSnapAgent = New FeatureSnap
 With m_pSnapAgent
 Set .FeatureClass = m_pRoadLayer.FeatureClass
 .HitType = esriGeometryPartBoundary

128

 End With
 'create new symbol
 Set m_pSymbol = New SimpleMarkerSymbol
 m_pSymbol.ROP2 = esriROPNotXOrPen
 Dim pMarkSym As IMarkerSymbol
 Set pMarkSym = m_pSymbol 'QI
 Dim myColor As IColor
 Set myColor = New RgbColor
 myColor.RGB = RGB(0, 0, 0)
 pMarkSym.Color = myColor
 pMarkSym.Size = 8
 'get the workspace to edit
 Dim pDS As IDataset
 Set pDS = m_pRoadLayer.FeatureClass
 Set m_pWksEdit = pDS.Workspace
 'start editing
 m_pWksEdit.StartEditing True
 'create new screen refresh
 Set m_pRefresh = New InvalidArea
 Set m_pRefresh.Display = m_pDisplay

 Exit Sub
ErrorHandler:
 HandleError True, "ICommand_OnClick " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)
 On Error GoTo ErrorHandler

 Set m_pApp = hook
 Dim pId As New UID
 pId.Value = "RoadSedimentAnalyst.clsExt"
 Set m_pExt = m_pApp.FindExtensionByCLSID(pId)

 Exit Sub
ErrorHandler:
 HandleError True, "ICommand_OnCreate " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Property Get ICommand_Tooltip() As String
 On Error GoTo ErrorHandler

 ICommand_Tooltip = "Add A Culvert And Compute It's Sediment"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Tooltip " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

129

Private Property Get ITool_Cursor() As esriCore.OLE_HANDLE
 On Error GoTo ErrorHandler

 ITool_Cursor = m_pMouseCur

 Exit Property
ErrorHandler:
 HandleError True, "ITool_Cursor " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Function ITool_Deactivate() As Boolean
 On Error GoTo ErrorHandler

 DrawSymbol m_pNewPoint
 Set m_pNewPoint = Nothing 'this will avoid marker leftovers
 Set m_pDisplay = Nothing
 Set m_pSymbol = Nothing

 If m_pWksEdit.IsBeingEdited Then
 m_pWksEdit.StopEditing True
 End If
 Set m_pWksEdit = Nothing
 Set m_pRefresh = Nothing
 Set m_pRoadLayer = Nothing
 Set m_pCulvLayer = Nothing
 Set m_pSedModel = Nothing
 Set m_pSnapAgent = Nothing

 ITool_Deactivate = True

 Exit Function
ErrorHandler:
 HandleError True, "ITool_Deactivate " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function

Private Function ITool_OnContextMenu(ByVal X As Long, ByVal Y As Long)
As Boolean
 On Error GoTo ErrorHandler

 'TODO: your implementation here

 Exit Function
ErrorHandler:
 HandleError True, "ITool_OnContextMenu " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function

Private Sub ITool_OnDblClick()
 On Error GoTo ErrorHandler

 'unused

130

 Exit Sub
ErrorHandler:
 HandleError True, "ITool_OnDblClick " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ITool_OnKeyDown(ByVal keyCode As Long, ByVal Shift As Long)
 On Error GoTo ErrorHandler

 'TODO: your implementation here

 Exit Sub
ErrorHandler:
 HandleError True, "ITool_OnKeyDown " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ITool_OnKeyUp(ByVal keyCode As Long, ByVal Shift As Long)
 On Error GoTo ErrorHandler

 'TODO: your implementation here

 Exit Sub
ErrorHandler:
 HandleError True, "ITool_OnKeyUp " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ITool_OnMouseDown(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 On Error GoTo ErrorHandler

 Dim pRoadFeature As IFeature
 Dim pPolyline As IPolyline
 Dim pUpperLower(1) As IPolyline
 Dim pLowerSegment As IFeature
 Dim pNewCulvert As IFeature

 If Not m_pNewPoint Is Nothing Then
' 'start editing
' m_pWksEdit.StartEditing True

 Set pRoadFeature = Util.FindFeatureXPoint(m_pRoadLayer.FeatureClass,
m_pNewPoint)
 'get the feature intersected by the point
 If Not pRoadFeature Is Nothing Then

 Dim lCulIdx As Long, lP1x As Long, lP2x As Long, lP3x As Long,
lRemx As Long, _

131

 lCux As Long, lChx As Long, lIdx As Long, lTpx As Long, lFpx As
Long, _
 lDelPotx As Long, lCulSedx As Long, lSedProdx As Long
 lIdx = m_lRoadFieldInd(0)
 lFpx = m_lRoadFieldInd(3)
 lTpx = m_lRoadFieldInd(4)
 lP1x = m_lRoadFieldInd(5)
 lP2x = m_lRoadFieldInd(6)
 lP3x = m_lRoadFieldInd(7)
 lChx = m_lRoadFieldInd(8)
 lCux = m_lRoadFieldInd(9)
 lSedProdx = m_lRoadFieldInd(10)
 lCulIdx = m_lCulFieldInd(0)
 lRemx = m_lCulFieldInd(1)
 lDelPotx = m_lCulFieldInd(2)
 lCulSedx = m_lCulFieldInd(3)

 m_pWksEdit.StartEditOperation
 'remove code is essential in the Remove procedure
 Dim iRemCode As Integer
 iRemCode = 2

 Set pPolyline = pRoadFeature.Shape
 'the max value can be negative. should check for it. see
GetMaxValue
 Dim lNewCul As Long
 lNewCul = Util.GetMaxValue(m_pCulvLayer.FeatureClass, lCulIdx) + 1
 'test to see if point has been placed at upper end, lower end
 'or somewhere else on the line and branch execution accordingly
 Util.CutPolylineAtPoint pPolyline, m_pNewPoint, pUpperLower
 If pUpperLower(0).Length = 0 Then
 'point has been placed at the upper end of a segment
 If Not ConnectFnct.HasParents(pRoadFeature, lP1x, lP2x, lP3x)
Then
 'a culvert must already be present as inseted at set-up
 MsgBox "debug message: can't add there"
 Exit Sub
 End If
 ElseIf pUpperLower(1).Length = 0 Then
 'point has been placed at the lower end of the segment
 Dim lChValue As Long
 lChValue = pRoadFeature.Value(lChx)
 If lChValue = -1 Then
 MsgBox "debug message: can't add on top of another culvert"
 Exit Sub
 Else
 'make road feature point to the child
 Set pRoadFeature =
Util.FindOneFeature(m_pRoadLayer.FeatureClass, _
 "RSAID", lChValue)
 'the point is now at the upper end so we apply the above
procedure
 End If
 Else
 'MsgBox "check 1"
 'point has been placed somewhere else on the line
 'set remove code to 1
 iRemCode = 1

132

 'split old road in two segments
 'add lower segment as new road feature
 Set pLowerSegment = m_pRoadLayer.FeatureClass.CreateFeature
 Set pLowerSegment.Shape = pUpperLower(1)
 'copy all non original attributes from initial segment
 Util.CopyAllNonRSAtributes pRoadFeature, pLowerSegment,
m_lRoadFieldInd, m_pRoadLayer.FeatureClass.ShapeFieldName
 'give new feat id
 Dim lMaxRoadId As Long
 lMaxRoadId = Util.GetMaxValue(m_pRoadLayer.FeatureClass, lIdx) +
1
 pLowerSegment.Value(lIdx) = lMaxRoadId
 'MsgBox "check 2"
 'set new feature's child and culvert to old roadfeature's values
 Dim lNewPt As Long
 lNewPt = Util.GetMaxOfFields(m_pRoadLayer.FeatureClass, lFpx,
lTpx) + 1
 pLowerSegment.Value(lChx) = pRoadFeature.Value(lChx)
 pLowerSegment.Value(lCux) = pRoadFeature.Value(lCux)
 pLowerSegment.Value(lP1x) = pRoadFeature.Value(lIdx) 'key for
propagation in set upstream
 pLowerSegment.Value(lTpx) = pRoadFeature.Value(lTpx)
 pLowerSegment.Value(lFpx) = lNewPt
 'MsgBox "check 3"
 ConnectFnct.SplitAttrib pLowerSegment, pRoadFeature, lSedProdx
 pLowerSegment.Store
 m_pRefresh.Add pLowerSegment
 'find original child and set one parent to NewF's id
 'MsgBox "check 4"
 ConnectFnct.ChangeOneParent m_pRoadLayer,
pRoadFeature.Value(lChx), pRoadFeature.Value(lIdx), _
 lMaxRoadId, lP1x, lP2x, lP3x, lIdx

 'change old road shape to upper segment
 Set pRoadFeature.Shape = pUpperLower(0)
 pRoadFeature.Value(lTpx) = lNewPt
 pRoadFeature.Store
 'MsgBox "check 5"
 m_pRefresh.Add pRoadFeature
 'Point road feature to newly added lower segment
 Set pRoadFeature = pLowerSegment
 End If

 'this is needed in any of the 3 cases. Enforces the right flow
 'and adds the culvert to the culvert layer

 'set all dependents upstream to new culvert number
 ConnectFnct.SetUpstream lNewCul, m_pRoadLayer, pRoadFeature, lP1x,
lP2x, lP3x, lCux
 'set parents of this segment to no child and set segment to have
no parents
 ConnectFnct.SevereChild pRoadFeature, m_pRoadLayer, lP1x, lP2x,
lP3x, lChx
 'add culvert to culvert layer
 Set pNewCulvert = m_pCulvLayer.FeatureClass.CreateFeature
 Set pNewCulvert.Shape = m_pNewPoint
 pNewCulvert.Value(lCulIdx) = lNewCul
 pNewCulvert.Value(lRemx) = iRemCode

133

 'compute sediment for culvert
 Dim dDelPot As Double
 dDelPot = m_pSedModel.GetDeliveryPotential(m_pNewPoint)
 pNewCulvert.Value(lDelPotx) = dDelPot
 pNewCulvert.Value(lCulSedx) = dDelPot *
ConnectFnct.SumUpSed(m_pRoadLayer.FeatureClass, _
 lSedProdx, "CULV", lNewCul)
 pNewCulvert.Store 'store now; new culvert will change
 m_pRefresh.Add m_pNewPoint

 'find the next culvert down and recompute it's sediment
 Set pNewCulvert = Util.FindOneFeature(m_pCulvLayer.FeatureClass,
"RSAID", pRoadFeature.Value(lCux))
 If Not pNewCulvert Is Nothing Then
 pNewCulvert.Value(lCulSedx) = pNewCulvert.Value(lDelPotx) * _

ConnectFnct.SumUpSed(m_pRoadLayer.FeatureClass, _
 lSedProdx, "CULV",
pNewCulvert.Value(lCulIdx))
 End If
 pNewCulvert.Store
 m_pRefresh.Add pNewCulvert

 'MsgBox "check 6"
 m_pWksEdit.StopEditOperation
 m_pRefresh.Invalidate esriAllScreenCaches

 'display sediment
 m_pExt.ShowTotalSed
(Util.SumValuesOnField(m_pCulvLayer.FeatureClass, lCulSedx))
 End If
' m_pWksEdit.StopEditing True
' MsgBox "saved to database"
 End If

 'release memory
 Set pRoadFeature = Nothing
 Set pPolyline = Nothing
 Set pUpperLower(0) = Nothing
 Set pUpperLower(1) = Nothing
 Set pLowerSegment = Nothing
 Set pNewCulvert = Nothing

 Exit Sub
ErrorHandler:
 m_pWksEdit.StopEditOperation
 m_pWksEdit.UndoEditOperation
' If m_pWksEdit.IsBeingEdited Then
' m_pWksEdit.StopEditing False
' End If
 HandleError True, "ITool_OnMouseDown " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ITool_OnMouseMove(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)

134

 On Error GoTo ErrorHandler

 If Button = 0 Then
 DrawSymbol m_pNewPoint
 Set m_pNewPoint = m_pDisplay.DisplayTransformation.ToMapPoint(X, Y)
 DrawSymbol m_pNewPoint
 End If

 Exit Sub
ErrorHandler:
 HandleError True, "ITool_OnMouseMove " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ITool_OnMouseUp(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 On Error GoTo ErrorHandler

 'not used

 Exit Sub
ErrorHandler:
 HandleError True, "ITool_OnMouseUp " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ITool_Refresh(ByVal hDC As esriCore.OLE_HANDLE)
 On Error GoTo ErrorHandler

 'avoid a marker left on the line
 Set m_pNewPoint = Nothing

 Exit Sub
ErrorHandler:
 HandleError True, "ITool_Refresh " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Sub DrawSymbol(pPoint)
 On Error GoTo ErrorHandler

 If Not pPoint Is Nothing Then 'the point is initialy nothing
 m_pDisplay.StartDrawing m_pDisplay.hDC, esriNoScreenCache
 m_pSymbol.SetupDC m_pDisplay.hDC, m_pDisplay.DisplayTransformation
 m_pSnapAgent.Snap Nothing, pPoint, 100
 m_pSymbol.Draw pPoint
 m_pSymbol.ResetDC
 m_pDisplay.FinishDrawing
 End If

 Exit Sub

135

ErrorHandler:
 HandleError True, "DrawSymbol " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

CLASS – clsEnforCon (clsEnforCon.cls)

Option Explicit

Implements ICommand

Private m_pApp As IApplication
Private m_pExt As clsExt
Private m_pBitmap As IPictureDisp

Private Sub Class_Initialize()
 Set m_pBitmap = LoadResPicture("Connect", vbResBitmap)
End Sub

Private Sub Class_Terminate()
 Set m_pBitmap = Nothing
 Set m_pApp = Nothing
 Set m_pExt = Nothing
End Sub

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 ICommand_Bitmap = m_pBitmap
End Property

Private Property Get ICommand_Caption() As String
 ICommand_Caption = "EnforCon"
End Property

Private Property Get ICommand_Category() As String
 ICommand_Category = "Road Sediment Analyst"
End Property

Private Property Get ICommand_Checked() As Boolean
 'TODO: your implementation here
End Property

Private Property Get ICommand_Enabled() As Boolean
 'check for certain properties in extension
 If Not m_pExt Is Nothing Then
 If m_pExt.IsStarted And m_pExt.IsSetUp And Not m_pExt.HasTopology
Then
 ICommand_Enabled = True
 Else: ICommand_Enabled = False
 End If
 Else: ICommand_Enabled = False
 End If
End Property

Private Property Get ICommand_HelpContextID() As Long
 'TODO: your implementation here

136

End Property

Private Property Get ICommand_HelpFile() As String
 'TODO: your implemetation here
End Property

Private Property Get ICommand_Message() As String
 ICommand_Message = "Enforce Required Ditch Connectivity"
End Property

Private Property Get ICommand_Name() As String
 ICommand_Name = "EnforCon"
End Property

Private Sub ICommand_OnClick()
 Dim pWksEdit As IWorkspaceEdit
 Dim pFeatClass As IFeatureClass
 Dim pMouseCur As IMouseCursor

 On Error GoTo erh
 'get the layer form the extension
 Set pFeatClass = m_pExt.RoadLayer.FeatureClass
 'get the workspace to edit
 Dim pDS As IDataset
 Set pDS = pFeatClass
 Set pWksEdit = pDS.Workspace
 'start editing
 If Not pWksEdit.IsBeingEdited Then
 pWksEdit.StartEditing False
 End If
 'set cursor to busy
 Set pMouseCur = New MouseCursor
 pMouseCur.SetCursor 2
 'enforce simple paths
 EnforceFnct.SimplifyPaths pFeatClass
 'enforce end connectivity only, no midway intersections
 EnforceFnct.ForceEndConnectivity pFeatClass
 'reset cursor
 pMouseCur.SetCursor 0
 'save changes
 pWksEdit.StopEditing True
 'refresh screen
 Dim pDoc As IMxDocument
 Set pDoc = m_pApp.Document
 pDoc.ActiveView.PartialRefresh esriViewGeography, m_pExt.RoadLayer,
Nothing

 'release memory
 Set pDoc = Nothing
 Set pDS = Nothing
 Set pWksEdit = Nothing
 Set pFeatClass = Nothing
 Set pMouseCur = Nothing
 Exit Sub
erh:
 If Not pWksEdit Is Nothing Then
 pWksEdit.StopEditing False
 End If
 If Not pMouseCur Is Nothing Then

137

 pMouseCur.SetCursor 0
 End If
 MsgBox "error in ConEnforce " & Error
End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)
 Set m_pApp = hook
 Dim pId As New UID
 pId.Value = "RoadSedimentAnalyst.clsExt"
 Set m_pExt = m_pApp.FindExtensionByCLSID(pId)
End Sub

Private Property Get ICommand_Tooltip() As String
 ICommand_Tooltip = "Enforce the proper connectivity for ditch
segments"
End Property

CLASS – clsExt (clsExtension.cls)

Option Explicit

Implements IExtension
Implements IExtensionConfig
Implements IPersistVariant

Private m_pApp As IApplication
Private m_pRoadLayer As IFeatureLayer
Private m_pCulvLayer As IFeatureLayer
Private m_pStreamLayer As IFeatureLayer
Private m_pDEMLayer As IRasterLayer
Private m_pDTSLayer As IRasterLayer

Private m_iMaxDelDist As Integer

Private m_ExtensionState As esriCore.esriExtensionState
Private m_bStarted As Boolean
Private m_bIsSetUp As Boolean
Private m_bHasTopology As Boolean
Private m_bIsAnalyzed As Boolean
Private m_sSedModelName As String
Private m_sGradeFieldName As String

Private m_iDefaultRoadAge As Integer
Private m_sDefaultRoadSurface As String
Private m_sDefaultRoadTraffic As String
Private m_iDefaultRoadGrade As Integer
Private m_iDefaultRoadWidth As Integer
Private m_iDefaultSlopeCover As Integer

Public Event IsStopping()
Public Event ShowSediment(amount As Double)
Private WithEvents m_pActiveViewEvents As Map

Private Sub Class_Initialize()

138

 m_ExtensionState = esriESDisabled
 m_bStarted = False
 m_bIsSetUp = False
 m_bHasTopology = False
 m_bIsAnalyzed = False
 m_sSedModelName = "RSA Sediment Modeler"
 m_sGradeFieldName = "grade"

 m_iDefaultRoadAge = 0
 m_sDefaultRoadSurface = "G2"
 m_sDefaultRoadTraffic = "L"
 m_iDefaultRoadWidth = 12
 m_iDefaultRoadGrade = 6
 m_iDefaultSlopeCover = 50

End Sub

Private Property Get IExtension_Name() As String

 IExtension_Name = "Road Sediment Analyst"

End Property

Private Sub IExtension_Shutdown()

 Set m_pCulvLayer = Nothing
 Set m_pRoadLayer = Nothing
 Set m_pApp = Nothing
 Set m_pActiveViewEvents = Nothing

End Sub

Private Sub IExtension_Startup(initializationData As Variant)

 Set m_pApp = initializationData
 Dim pMxDoc As IMxDocument
 Set pMxDoc = m_pApp.Document
 Set m_pActiveViewEvents = pMxDoc.FocusMap

End Sub

Private Property Get IExtensionConfig_Description() As String

 IExtensionConfig_Description = "Relief Culvert Sediment Analysis Tool"

End Property

Private Property Get IExtensionConfig_ProductName() As String

 IExtensionConfig_ProductName = "Road Sediment Analyst"

End Property

139

Private Property Let IExtensionConfig_State(ByVal RHS As
esriCore.esriExtensionState)

 m_ExtensionState = RHS

End Property

Private Property Get IExtensionConfig_State() As
esriCore.esriExtensionState

 IExtensionConfig_State = m_ExtensionState

End Property

Private Property Get IPersistVariant_ID() As esriCore.IUID

 IPersistVariant_ID.Value = "RSA option values"

End Property

Private Sub IPersistVariant_Load(ByVal Stream As
esriCore.IVariantStream)
 On Error GoTo erh
 'read data in and set variables accordingly
 m_sSedModelName = Stream.Read
 m_iDefaultRoadAge = Stream.Read
 m_iDefaultRoadGrade = Stream.Read
 m_sDefaultRoadSurface = Stream.Read
 m_iDefaultRoadWidth = Stream.Read
 m_sDefaultRoadTraffic = Stream.Read
 m_iDefaultSlopeCover = Stream.Read
 m_bStarted = Stream.Read
 If m_bStarted Then 'continue reading
 m_bIsSetUp = Stream.Read
 m_bHasTopology = Stream.Read
 m_bIsAnalyzed = Stream.Read
 m_iMaxDelDist = Stream.Read
 Dim pDoc As IMxDocument
 Set pDoc = m_pApp.Document
 Dim bFoundAll As Boolean
 bFoundAll = False
 bFoundAll = Util.ExistsLayer(Stream.Read, m_pRoadLayer, pDoc)
 bFoundAll = Util.ExistsLayer(Stream.Read, m_pCulvLayer, pDoc)
 bFoundAll = Util.ExistsLayer(Stream.Read, m_pDTSLayer, pDoc)
 bFoundAll = Util.ExistsLayer(Stream.Read, m_pStreamLayer, pDoc)
 bFoundAll = Util.ExistsLayer(Stream.Read, m_pDEMLayer, pDoc)
 m_bStarted = bFoundAll
 End If
 'MsgBox "read values : " & m_bStarted & vbLf & m_bIsSetUp & vbLf _
 ' & m_bHasTopology & vbLf & m_bIsAnalyzed & vbLf
& m_iMaxDelDist
 'display sediment
 If m_bIsAnalyzed Then
 'display sediment when started
 If Not m_pCulvLayer Is Nothing Then
 'find field

140

 Dim index As Long
 index = m_pCulvLayer.FeatureClass.FindField("SED")
 If index > -1 Then
 RaiseEvent
ShowSediment(Util.SumValuesOnField(m_pCulvLayer.FeatureClass, index))
 End If
 End If
 End If
 Exit Sub
erh:
 MsgBox "Error ecountered loading variables" & vbLf & Error & vbLf &
"Road Sediment Analyst will reinitialize!"
 m_bStarted = False
 m_bIsSetUp = False
 m_bHasTopology = False
 m_bIsAnalyzed = False
End Sub

Private Sub IPersistVariant_Save(ByVal Stream As
esriCore.IVariantStream)

 Stream.Write m_sSedModelName
 Stream.Write m_iDefaultRoadAge
 Stream.Write m_iDefaultRoadGrade
 Stream.Write m_sDefaultRoadSurface
 Stream.Write m_iDefaultRoadWidth
 Stream.Write m_sDefaultRoadTraffic
 Stream.Write m_iDefaultSlopeCover
 Stream.Write m_bStarted
 Stream.Write m_bIsSetUp
 Stream.Write m_bHasTopology
 Stream.Write m_bIsAnalyzed
 Stream.Write m_iMaxDelDist
 Stream.Write Util.VerifyName(m_pRoadLayer)
 Stream.Write Util.VerifyName(m_pCulvLayer)
 Stream.Write Util.VerifyName(m_pDTSLayer)
 Stream.Write Util.VerifyName(m_pStreamLayer)
 Stream.Write Util.VerifyName(m_pDEMLayer)

End Sub

Public Property Get RoadLayer() As IFeatureLayer

 Set RoadLayer = m_pRoadLayer

End Property

Public Property Let RoadLayer(ByVal RoadLayer As IFeatureLayer)

 Set m_pRoadLayer = RoadLayer
 'DisplayNameControl "Road Layer", m_pRoadLayer

End Property

Public Property Get CulvLayer() As IFeatureLayer

141

 Set CulvLayer = m_pCulvLayer

End Property

Public Property Let CulvLayer(ByVal CulvLayer As IFeatureLayer)

 Set m_pCulvLayer = CulvLayer
 'DisplayNameControl "Culvert Layer", m_pCulvLayer

End Property

Public Property Get IsStarted() As Boolean

 IsStarted = m_bStarted

End Property

Public Property Let IsStarted(ByVal Started As Boolean)

 m_bStarted = Started

End Property

Public Property Get StreamLayer() As IFeatureLayer

 Set StreamLayer = m_pStreamLayer

End Property

Public Property Let StreamLayer(ByVal StreamLayer As IFeatureLayer)

 Set m_pStreamLayer = StreamLayer
 'DisplayNameControl "Stream Layer", m_pStreamLayer

End Property

Public Property Get DemLayer() As IRasterLayer

 Set DemLayer = m_pDEMLayer

End Property

Public Property Let DemLayer(ByVal DemLayer As IRasterLayer)

 Set m_pDEMLayer = DemLayer
 'DisplayNameControl "DEM Layer", m_pDEMLayer

End Property

Private Sub DisplayNameControl(sName As String, pData As Variant)

 If pData Is Nothing Then
 MsgBox sName & " set to nothing"

142

 ElseIf TypeOf pData Is IDataset Then
 Dim pLayer As IDataset
 Set pLayer = pData
 MsgBox sName & " set to " & pLayer.Name
 Else: MsgBox sName & " set to " & pData
 End If

End Sub

Public Property Get SedModelName() As String

 SedModelName = m_sSedModelName

End Property

Public Property Let SedModelName(ByVal sNewValue As String)

 m_sSedModelName = sNewValue
 'DisplayNameControl "Sediment modeler", sNewValue

End Property

Public Property Get DistToStreamsLayer() As IRasterLayer

 Set DistToStreamsLayer = m_pDTSLayer

End Property

Public Property Let DistToStreamsLayer(ByVal pNewValue As IRasterLayer)

 Set m_pDTSLayer = pNewValue

End Property

Private Sub m_pActiveViewEvents_ItemDeleted(ByVal Item As Variant)

 'if one of the RSA layers is removed
 'will set RSA started to false in order to disable appropriate tools
 If m_bStarted Then
 Dim pLayer As ILayer
 Set pLayer = Item
 'these layers are necessary for both setup and non setup case
 If pLayer Is m_pRoadLayer Or pLayer Is m_pCulvLayer Or _
 pLayer Is m_pDTSLayer Then
 m_bIsSetUp = False
 m_bStarted = False
 m_bHasTopology = False
 m_bIsAnalyzed = False
 Exit Sub
 End If
 'when RSA has not been set up the next layers are also necessary
 If Not m_bHasTopology Then
 If pLayer Is m_pStreamLayer Then
 m_bStarted = False

143

 End If
 End If
 Set pLayer = Nothing
 End If

End Sub

Public Property Get IsSetUp() As Boolean

 IsSetUp = m_bIsSetUp

End Property

Public Property Let IsSetUp(ByVal bNewValue As Boolean)

 m_bIsSetUp = bNewValue

End Property

Public Property Get HasTopology() As Boolean

 HasTopology = m_bHasTopology

End Property

Public Property Let HasTopology(ByVal bNewValue As Boolean)

 m_bHasTopology = bNewValue

End Property

Public Property Get GradeName() As String

 GradeName = m_sGradeFieldName

End Property

Public Property Let GradeName(ByVal sNewName As String)

 m_sGradeFieldName = sNewName

End Property

Public Property Get IsAnalyzed() As Boolean

 IsAnalyzed = m_bIsAnalyzed

End Property

Public Property Let IsAnalyzed(ByVal bNewValue As Boolean)

144

 m_bIsAnalyzed = bNewValue

End Property

Public Property Get MaxDeliveryDistance() As Integer

 MaxDeliveryDistance = m_iMaxDelDist

End Property

Public Property Let MaxDeliveryDistance(ByVal vNewValue As Integer)

 m_iMaxDelDist = vNewValue

End Property

Public Function TriggerStopEvent()

 RaiseEvent IsStopping

End Function

Public Function ShowTotalSed(amount As Double)

 RaiseEvent ShowSediment(amount)

End Function

Public Property Get DefaultRoadAge() As Integer
 DefaultRoadAge = m_iDefaultRoadAge
End Property

Public Property Let DefaultRoadAge(ByVal vNewValue As Integer)
 m_iDefaultRoadAge = vNewValue
End Property

Public Property Get DefaultRoadWidth() As Integer
 DefaultRoadWidth = m_iDefaultRoadWidth
End Property

Public Property Let DefaultRoadWidth(ByVal vNewValue As Integer)
 m_iDefaultRoadWidth = vNewValue
End Property

Public Property Get DefaultRoadGrade() As Integer
 DefaultRoadGrade = m_iDefaultRoadGrade
End Property

Public Property Let DefaultRoadGrade(ByVal vNewValue As Integer)
 m_iDefaultRoadGrade = vNewValue
End Property

Public Property Get DefaultRoadTraffic() As String
 DefaultRoadTraffic = m_sDefaultRoadTraffic

145

End Property

Public Property Let DefaultRoadTraffic(ByVal vNewValue As String)
 m_sDefaultRoadTraffic = vNewValue
End Property

Public Property Get DefaultRoadSurface() As String
 DefaultRoadSurface = m_sDefaultRoadSurface
End Property

Public Property Let DefaultRoadSurface(ByVal vNewValue As String)
 m_sDefaultRoadSurface = vNewValue
End Property

Public Property Get DefaultSlopeCover() As Integer
 DefaultSlopeCover = m_iDefaultSlopeCover
End Property

Public Property Let DefaultSlopeCover(ByVal vNewValue As Integer)
 m_iDefaultSlopeCover = vNewValue
End Property

CLASS – clsFlip (clsFlip.cls)

Option Explicit

Implements ICommand
Implements ITool

Private m_pApp As IApplication
Private m_pBitmap As IPictureDisp
Private m_pExt As clsExt
Private m_pFeatClass As IFeatureClass
Private m_pWksEdit As IWorkspaceEdit
Private m_pRefresh As IInvalidArea
Private m_pNewPoint As IPoint
Private m_pDisplay As IDisplay

Private Sub Class_Initialize()
 'load the button image from the resource file
 Set m_pBitmap = LoadResPicture("Flip", vbResBitmap)
End Sub

Private Sub Class_Terminate()
 Set m_pBitmap = Nothing
 Set m_pExt = Nothing
 Set m_pApp = Nothing
End Sub

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 ICommand_Bitmap = m_pBitmap
End Property

Private Property Get ICommand_Caption() As String
 ICommand_Caption = "Flip"
End Property

146

Private Property Get ICommand_Category() As String
 ICommand_Category = "Road Sediment Analyst"
End Property

Private Property Get ICommand_Checked() As Boolean
 'TODO: your implementation here
End Property

Private Property Get ICommand_Enabled() As Boolean
 'check for certain properties in extension
 If Not m_pExt Is Nothing Then
 If m_pExt.IsStarted And m_pExt.IsSetUp And Not m_pExt.HasTopology
Then
 ICommand_Enabled = True
 Else: ICommand_Enabled = False
 End If
 Else: ICommand_Enabled = False
 End If
End Property

Private Property Get ICommand_HelpContextID() As Long
 'TODO: your implementation here
End Property

Private Property Get ICommand_HelpFile() As String
 'TODO: your implementation here
End Property

Private Property Get ICommand_Message() As String
 ICommand_Message = "Flip Flow Direction Along Road Ditch"
End Property

Private Property Get ICommand_Name() As String
 ICommand_Name = "Flip"
End Property

Private Sub ICommand_OnClick()
 On Error GoTo erh
 Dim pMxDoc As IMxDocument
 Set pMxDoc = m_pApp.Document
 Set m_pDisplay = pMxDoc.ActiveView.ScreenDisplay
 Set m_pFeatClass = m_pExt.RoadLayer.FeatureClass
 'get the workspace to edit
 Dim pDS As IDataset
 Set pDS = m_pFeatClass
 Set m_pWksEdit = pDS.Workspace
 If Not m_pWksEdit.IsBeingEdited Then
 m_pWksEdit.StartEditing True
 End If
 'create new screen refresh
 Set m_pRefresh = New InvalidArea
 Set m_pRefresh.Display = m_pDisplay

 Exit Sub
erh:
 MsgBox "error in create flip cmd: " & Error
End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)

147

 Set m_pApp = hook
 Dim pId As New UID
 pId.Value = "RoadSedimentAnalyst.clsExt"
 Set m_pExt = m_pApp.FindExtensionByCLSID(pId)
End Sub

Private Property Get ICommand_Tooltip() As String
 ICommand_Tooltip = "Flip Flow Direction Along Road Ditch"
End Property

Private Property Get ITool_Cursor() As esriCore.OLE_HANDLE

End Property

Private Function ITool_Deactivate() As Boolean
 Set m_pDisplay = Nothing
 Set m_pFeatClass = Nothing
 Set m_pNewPoint = Nothing

 If Not m_pWksEdit Is Nothing Then
 m_pWksEdit.StopEditing True
 End If
 Set m_pWksEdit = Nothing
 Set m_pRefresh = Nothing

 ITool_Deactivate = True
End Function

Private Function ITool_OnContextMenu(ByVal X As Long, ByVal Y As Long)
As Boolean
 'TODO: your implementation here
End Function

Private Sub ITool_OnDblClick()
 'unused
End Sub

Private Sub ITool_OnKeyDown(ByVal keyCode As Long, ByVal Shift As Long)
 'TODO: your implementation here
End Sub

Private Sub ITool_OnKeyUp(ByVal keyCode As Long, ByVal Shift As Long)
 'TODO: your implementation here
End Sub

Private Sub ITool_OnMouseDown(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 If Button = 1 Then
 Set m_pNewPoint = m_pDisplay.DisplayTransformation.ToMapPoint(X, Y)
 If Not m_pNewPoint Is Nothing Then
 Dim pFeat As IFeature
 Set pFeat = Util.FindFeatureNearPoint(m_pFeatClass, m_pNewPoint,
10)
 'get the feature intersected by the point
 If Not pFeat Is Nothing Then
 m_pWksEdit.StartEditOperation
 'flip flow direction
 Dim pPolyline As IPolyline
 Set pPolyline = pFeat.Shape

148

 pPolyline.ReverseOrientation
 pFeat.Store
 m_pWksEdit.StopEditOperation

 m_pRefresh.Add pFeat
 m_pRefresh.Invalidate esriAllScreenCaches
 'release memory
 Set pFeat = Nothing
 End If
 End If
 End If
End Sub

Private Sub ITool_OnMouseMove(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)

End Sub

Private Sub ITool_OnMouseUp(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 'not used
End Sub

Private Sub ITool_Refresh(ByVal hDC As esriCore.OLE_HANDLE)

End Sub

CLASS – clsMenu (clsMenu.cls)

Option Explicit

Implements IMenuDef

Private Property Get IMenuDef_Caption() As String
 IMenuDef_Caption = "Culvert Spacer"
End Property

Private Sub IMenuDef_GetItemInfo(ByVal pos As Long, ByVal itemDef As
esriCore.IItemDef)
 Dim pUID As New UID
 itemDef.Group = False

 Select Case pos
 Case 0
 pUID.Value = "RoadSedimentAnalyst.clsStart"
 Case 1
 pUID.Value = "RoadSedimentAnalyst.clsSetUpRoad"
 Case 2
 pUID.Value = "RoadSedimentAnalyst.clsSetUpFlow"
 Case 3
 pUID.Value = "RoadSedimentAnalyst.clsRunAnalysis"
 Case 4
 pUID.Value = "RoadSedimentAnalyst.clsStop"
 Case 5
 itemDef.Group = True
 pUID.Value = "RoadSedimentAnalyst.clsOptions"

149

 End Select

 itemDef.ID = pUID
End Sub

Private Property Get IMenuDef_ItemCount() As Long
 IMenuDef_ItemCount = 6
End Property

Private Property Get IMenuDef_Name() As String
 IMenuDef_Name = "Road Sediment Analyst Menu"
End Property

CLASS – clsMerge (clsMerge.cls)

Option Explicit

Implements ICommand
Implements ITool

Private m_pApp As IApplication
Private m_pBitmap As IPictureDisp
Private m_pMouseCur As IPictureDisp
Private m_pExt As clsExt
Private m_pFeatClass As IFeatureClass
Private m_pWksEdit As IWorkspaceEdit
Private m_pRefresh As IInvalidArea
Private m_pFeatures() As IFeature
Private m_pFeatSel As IFeatureSelection
Dim e1 As Integer, e2 As Integer

Private m_pDisplay As IDisplay
Private m_pSymbol As ISymbol
Private m_pNewPoint As IPoint
Private m_pSnapAgent As IFeatureSnapAgent

Private Sub Class_Initialize()
 'load the button image from the resource file
 Set m_pBitmap = LoadResPicture("Merge", vbResBitmap)
 Set m_pMouseCur = LoadResPicture("EditLine", vbResCursor)
End Sub

Private Sub Class_Terminate()
 Set m_pBitmap = Nothing
 Set m_pMouseCur = Nothing
 Set m_pExt = Nothing
 Set m_pApp = Nothing
End Sub

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 ICommand_Bitmap = m_pBitmap
End Property

Private Property Get ICommand_Caption() As String
 ICommand_Caption = "Merge"
End Property

150

Private Property Get ICommand_Category() As String
 ICommand_Category = "Road Sediment Analyst"
End Property

Private Property Get ICommand_Checked() As Boolean
 'TODO: your implementation here
End Property

Private Property Get ICommand_Enabled() As Boolean
 'check for certain properties in extension
 If Not m_pExt Is Nothing Then
 If m_pExt.IsStarted And m_pExt.IsSetUp And Not m_pExt.HasTopology
Then
 ICommand_Enabled = True
 Else: ICommand_Enabled = False
 End If
 Else: ICommand_Enabled = False
 End If
End Property

Private Property Get ICommand_HelpContextID() As Long
 'TODO: your implementation here
End Property

Private Property Get ICommand_HelpFile() As String
 'TODO: your implementation here
End Property

Private Property Get ICommand_Message() As String
 ICommand_Message = "Merge Two Road Segments"
End Property

Private Property Get ICommand_Name() As String
 ICommand_Name = "Merge"
End Property

Private Sub ICommand_OnClick()
 On Error GoTo erh
 Dim pMxDoc As IMxDocument
 Set pMxDoc = m_pApp.Document
 Set m_pDisplay = pMxDoc.ActiveView.ScreenDisplay
 Set m_pFeatClass = m_pExt.RoadLayer.FeatureClass
 'create new snap agent
 Set m_pSnapAgent = New FeatureSnap
 With m_pSnapAgent
 Set .FeatureClass = m_pFeatClass
 .HitType = esriGeometryPartEndpoint
 End With
 'create new symbol
 Set m_pSymbol = New SimpleMarkerSymbol
 m_pSymbol.ROP2 = esriROPNotXOrPen
 Dim pMarkSym As IMarkerSymbol
 Set pMarkSym = m_pSymbol 'QI
 Dim myColor As IColor
 Set myColor = New RgbColor
 myColor.RGB = RGB(0, 0, 0)
 pMarkSym.Color = myColor
 pMarkSym.Size = 8

151

 ITool_Deactivate = True
End Function

Private Function ITool_OnContextMenu(ByVal X As Long, ByVal Y As Long)
As Boolean
 ITool_OnContextMenu = True
End Function

Private Sub ITool_OnDblClick()
 'unused

 'get the workspace to edit
 Dim pDS As IDataset
 Set pDS = m_pFeatClass
 Set m_pWksEdit = pDS.Workspace
 If Not m_pWksEdit.IsBeingEdited Then
 m_pWksEdit.StartEditing True
 End If
 'get feature selection
 Set m_pFeatSel = m_pExt.RoadLayer
 'create new screen refresh
 Set m_pRefresh = New InvalidArea
 Set m_pRefresh.Display = m_pDisplay

 Exit Sub
erh:
 MsgBox "error in create flip cmd: " & Error
End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)
 Set m_pApp = hook
 Dim pId As New UID
 pId.Value = "RoadSedimentAnalyst.clsExt"
 Set m_pExt = m_pApp.FindExtensionByCLSID(pId)
End Sub

Private Property Get ICommand_Tooltip() As String
 ICommand_Tooltip = "Merge Two Road Segments"
End Property

Private Property Get ITool_Cursor() As esriCore.OLE_HANDLE
 ITool_Cursor = m_pMouseCur
End Property

Private Function ITool_Deactivate() As Boolean
 DrawSymbol m_pNewPoint
 Set m_pNewPoint = Nothing 'this will avoid marker leftovers
 Set m_pDisplay = Nothing
 Set m_pSymbol = Nothing

 m_pFeatSel.Clear

 If Not m_pWksEdit Is Nothing Then
 m_pWksEdit.StopEditing True
 End If
 Set m_pWksEdit = Nothing
 m_pRefresh.Invalidate esriAllScreenCaches
 Set m_pFeatSel = Nothing
 Set m_pRefresh = Nothing

152

End Sub

Private Sub ITool_OnKeyDown(ByVal keyCode As Long, ByVal Shift As Long)
 'TODO: your implementation here
End Sub

Private Sub ITool_OnKeyUp(ByVal keyCode As Long, ByVal Shift As Long)
 'TODO: your implementation here
End Sub

Private Sub ITool_OnMouseDown(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 If Button = 1 Then
 If Not m_pNewPoint Is Nothing Then
 m_pFeatures = Util.FindAllFeaturesXPoint(m_pFeatClass,
m_pNewPoint)
 'select two feature from the array
 m_pFeatSel.Clear
 If Not m_pFeatures(0) Is Nothing Then
 If UBound(m_pFeatures) > 0 Then
 SelectTwoFeatures
 End If
 End If
 End If
 Else 'button is 2
 'rotate selection at user's will
 On Error GoTo erh
 If UBound(m_pFeatures) > 1 Then
 SelectTwoFeatures
 End If
 End If

 Exit Sub
erh:
 MsgBox Error
End Sub

Private Sub ITool_OnMouseMove(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 If Button = 0 Then
 DrawSymbol m_pNewPoint
 Set m_pNewPoint = m_pDisplay.DisplayTransformation.ToMapPoint(X, Y)
 DrawSymbol m_pNewPoint
 End If
End Sub

Private Sub ITool_OnMouseUp(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 If Button = 1 Then
 'merge features here
 If e1 <> e2 And (Not m_pFeatures(e1) Is Nothing) And _
 (Not m_pFeatures(e2) Is Nothing) Then
 m_pWksEdit.StartEditOperation
 'merge features
 Dim pBase As IPolyline
 Set pBase = m_pFeatures(e1).Shape
 Dim pAppend As IPolyline
 Set pAppend = m_pFeatures(e2).Shape

153

 Set m_pFeatures(e1).Shape = Util.MergePolylines(pBase, pAppend)
 m_pFeatures(e1).Store
 m_pFeatures(e2).Delete
 m_pRefresh.Add m_pFeatures(e1)

 m_pWksEdit.StopEditOperation
 m_pRefresh.Invalidate esriAllScreenCaches
 End If
 'will reset selected segments when button 1 is pushed
 e1 = 0
 e2 = 0
 End If
End Sub

Private Sub ITool_Refresh(ByVal hDC As esriCore.OLE_HANDLE)
 'avoid a marker left on the line
 Set m_pNewPoint = Nothing
End Sub

Sub DrawSymbol(pPoint)
 On Error GoTo erh
 If Not pPoint Is Nothing Then 'the point is initialy nothing
 m_pDisplay.StartDrawing m_pDisplay.hDC, esriNoScreenCache
 m_pSymbol.SetupDC m_pDisplay.hDC, m_pDisplay.DisplayTransformation
 m_pSnapAgent.Snap Nothing, pPoint, 100
 m_pSymbol.Draw pPoint
 m_pSymbol.ResetDC
 m_pDisplay.FinishDrawing
 End If
 Exit Sub
erh:
 MsgBox "error in draw symbol " & Error
End Sub

Private Sub SelectTwoFeatures()
 On Error GoTo erh
 Dim max As Integer, min As Integer
 max = UBound(m_pFeatures)
 min = LBound(m_pFeatures)

 e2 = e2 + 1
 If e2 > max Then
 e1 = e1 + 1
 If e1 = max Then
 e1 = min
 End If
 e2 = e1 + 1
 End If
 Debug.Print max & " " & min & " " & e1 & " " & e2

 'rotate selection
 m_pFeatSel.Clear
 m_pFeatSel.Add m_pFeatures(e1)
 m_pFeatSel.Add m_pFeatures(e2)
 m_pRefresh.Add m_pFeatures(e1)
 m_pRefresh.Add m_pFeatures(e2)
 m_pRefresh.Invalidate esriAllScreenCaches
 Exit Sub
erh:

154

 MsgBox Error
End Sub

CLASS – clsMoveCulv (clsMoveCulv.cls)

Option Explicit

Implements ICommand
Implements ITool

Private m_pApp As IApplication
Private m_pBitmap As IPictureDisp
Private m_pMouseCur As IPictureDisp
Private m_pExt As clsExt
Private m_pFeatClass As IFeatureClass
Private m_pWksEdit As IWorkspaceEdit
Private m_pRefresh As IInvalidArea
Private m_pFeatures() As IFeature
Private m_pFeatSel As IFeatureSelection
Dim e1 As Integer, e2 As Integer

Private m_pDisplay As IDisplay
Private m_pSymbol As ISymbol
Private m_pNewPoint As IPoint
Private m_pSnapAgent As IFeatureSnapAgent

Private Sub Class_Initialize()
 'load the button image from the resource file
 Set m_pBitmap = LoadResPicture("Merge", vbResBitmap)
 Set m_pMouseCur = LoadResPicture("EditLine", vbResCursor)
End Sub

Private Sub Class_Terminate()
 Set m_pBitmap = Nothing
 Set m_pMouseCur = Nothing
 Set m_pExt = Nothing
 Set m_pApp = Nothing
End Sub

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 ICommand_Bitmap = m_pBitmap
End Property

Private Property Get ICommand_Caption() As String
 ICommand_Caption = "Merge"
End Property

Private Property Get ICommand_Category() As String
 ICommand_Category = "Road Sediment Analyst"
End Property

Private Property Get ICommand_Checked() As Boolean
 'TODO: your implementation here
End Property

Private Property Get ICommand_Enabled() As Boolean

155

 'check for certain properties in extension
 If Not m_pExt Is Nothing Then
 If m_pExt.IsStarted And m_pExt.IsSetUp And Not m_pExt.HasTopology
Then
 ICommand_Enabled = True
 Else: ICommand_Enabled = False
 End If

End Property

Private Property Get ICommand_HelpContextID() As Long
 'TODO: your implementation here
End Property

Private Property Get ICommand_HelpFile() As String
 'TODO: your implementation here
End Property

Private Property Get ICommand_Message() As String
 ICommand_Message = "Merge Two Road Segments"
End Property

Private Property Get ICommand_Name() As String
 ICommand_Name = "Merge"
End Property

Private Sub ICommand_OnClick()
 On Error GoTo erh
 Dim pMxDoc As IMxDocument
 Set pMxDoc = m_pApp.Document
 Set m_pDisplay = pMxDoc.ActiveView.ScreenDisplay
 Set m_pFeatClass = m_pExt.RoadLayer.FeatureClass
 'create new snap agent
 Set m_pSnapAgent = New FeatureSnap
 With m_pSnapAgent
 Set .FeatureClass = m_pFeatClass
 .HitType = esriGeometryPartEndpoint
 End With
 'create new symbol
 Set m_pSymbol = New SimpleMarkerSymbol
 m_pSymbol.ROP2 = esriROPNotXOrPen
 Dim pMarkSym As IMarkerSymbol
 Set pMarkSym = m_pSymbol 'QI
 Dim myColor As IColor
 Set myColor = New RgbColor
 myColor.RGB = RGB(0, 0, 0)
 pMarkSym.Color = myColor
 pMarkSym.Size = 8
 'get the workspace to edit
 Dim pDS As IDataset
 Set pDS = m_pFeatClass
 Set m_pWksEdit = pDS.Workspace
 If Not m_pWksEdit.IsBeingEdited Then
 m_pWksEdit.StartEditing True
 End If
 'get feature selection
 Set m_pFeatSel = m_pExt.RoadLayer
 'create new screen refresh

 Else: ICommand_Enabled = False
 End If

156

 Set m_pRefresh = New InvalidArea
 Set m_pRefresh.Display = m_pDisplay

 Exit Sub
erh:
 MsgBox "error in create flip cmd: " & Error
End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)
 Set m_pApp = hook
 Dim pId As New UID
 pId.Value = "RoadSedimentAnalyst.clsExt"
 Set m_pExt = m_pApp.FindExtensionByCLSID(pId)
End Sub

Private Property Get ICommand_Tooltip() As String
 ICommand_Tooltip = "Merge Two Road Segments"
End Property

Private Property Get ITool_Cursor() As esriCore.OLE_HANDLE
 ITool_Cursor = m_pMouseCur
End Property

Private Function ITool_Deactivate() As Boolean
 DrawSymbol m_pNewPoint
 Set m_pNewPoint = Nothing 'this will avoid marker leftovers
 Set m_pDisplay = Nothing
 Set m_pSymbol = Nothing

 m_pFeatSel.Clear

 If Not m_pWksEdit Is Nothing Then
 m_pWksEdit.StopEditing True
 End If
 Set m_pWksEdit = Nothing
 m_pRefresh.Invalidate esriAllScreenCaches
 Set m_pFeatSel = Nothing
 Set m_pRefresh = Nothing

 ITool_Deactivate = True
End Function

Private Function ITool_OnContextMenu(ByVal X As Long, ByVal Y As Long)
As Boolean
 ITool_OnContextMenu = True
End Function

Private Sub ITool_OnDblClick()
 'unused
End Sub

Private Sub ITool_OnKeyDown(ByVal keyCode As Long, ByVal Shift As Long)
 'TODO: your implementation here
End Sub

Private Sub ITool_OnKeyUp(ByVal keyCode As Long, ByVal Shift As Long)
 'TODO: your implementation here
End Sub

157

Private Sub ITool_OnMouseDown(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 If Button = 1 Then
 If Not m_pNewPoint Is Nothing Then
 m_pFeatures = Util.FindAllFeaturesXPoint(m_pFeatClass,
m_pNewPoint)
 'select two feature from the array
 m_pFeatSel.Clear
 If Not m_pFeatures(0) Is Nothing Then
 If UBound(m_pFeatures) > 0 Then
 SelectTwoFeatures
 End If
 End If
 End If
 Else 'button is 2
 'rotate selection at user's will
 On Error GoTo erh
 If UBound(m_pFeatures) > 1 Then
 SelectTwoFeatures
 End If
 End If

 Exit Sub
erh:
 MsgBox Error
End Sub

Private Sub ITool_OnMouseMove(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 If Button = 0 Then
 DrawSymbol m_pNewPoint
 Set m_pNewPoint = m_pDisplay.DisplayTransformation.ToMapPoint(X, Y)
 DrawSymbol m_pNewPoint
 End If
End Sub

Private Sub ITool_OnMouseUp(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 If Button = 1 Then
 'merge features here
 If e1 <> e2 And (Not m_pFeatures(e1) Is Nothing) And _
 (Not m_pFeatures(e2) Is Nothing) Then
 m_pWksEdit.StartEditOperation
 'merge features
 Dim pBase As IPolyline
 Set pBase = m_pFeatures(e1).Shape
 Dim pAppend As IPolyline
 Set pAppend = m_pFeatures(e2).Shape

 Set m_pFeatures(e1).Shape = Util.MergePolylines(pBase, pAppend)
 m_pFeatures(e1).Store
 m_pFeatures(e2).Delete
 m_pRefresh.Add m_pFeatures(e1)

 m_pWksEdit.StopEditOperation
 m_pRefresh.Invalidate esriAllScreenCaches
 End If
 'will reset selected segments when button 1 is pushed
 e1 = 0

158

 e2 = 0
 End If
End Sub

Private Sub ITool_Refresh(ByVal hDC As esriCore.OLE_HANDLE)
 'avoid a marker left on the line
 Set m_pNewPoint = Nothing
End Sub

Sub DrawSymbol(pPoint)
 On Error GoTo erh
 If Not pPoint Is Nothing Then 'the point is initialy nothing
 m_pDisplay.StartDrawing m_pDisplay.hDC, esriNoScreenCache
 m_pSymbol.SetupDC m_pDisplay.hDC, m_pDisplay.DisplayTransformation
 m_pSnapAgent.Snap Nothing, pPoint, 100
 m_pSymbol.Draw pPoint
 m_pSymbol.ResetDC
 m_pDisplay.FinishDrawing
 End If
 Exit Sub
erh:
 MsgBox "error in draw symbol " & Error
End Sub

Private Sub SelectTwoFeatures()
 On Error GoTo erh
 Dim max As Integer, min As Integer
 max = UBound(m_pFeatures)
 min = LBound(m_pFeatures)

 e2 = e2 + 1
 If e2 > max Then
 e1 = e1 + 1
 If e1 = max Then
 e1 = min
 End If
 e2 = e1 + 1
 End If
 Debug.Print max & " " & min & " " & e1 & " " & e2

 'rotate selection
 m_pFeatSel.Clear
 m_pFeatSel.Add m_pFeatures(e1)
 m_pFeatSel.Add m_pFeatures(e2)
 m_pRefresh.Add m_pFeatures(e1)
 m_pRefresh.Add m_pFeatures(e2)
 m_pRefresh.Invalidate esriAllScreenCaches
 Exit Sub
erh:
 MsgBox Error
End Sub

CLASS – clsNodeGrade (clsNodeGrade.cls)

Option Explicit

Implements ICommand

159

Implements ITool

Private m_pApp As IApplication
Private m_pBitmap As IPictureDisp
Private m_pMouseCur As IPictureDisp
Private m_pExt As clsExt
Private m_pFeatClass As IFeatureClass
Private m_pWksEdit As IWorkspaceEdit
Private m_pRefresh As IInvalidArea
Private m_pFeatures() As IFeature
Private m_lGradeIndex As Long
Private m_bDraw As Boolean

Private m_pDisplay As IDisplay
Private m_pSymbol As ISymbol
Private m_pNewPoint As IPoint
Private m_pSnapAgent As IFeatureSnapAgent

Private Sub Class_Initialize()
 'load the button image from the resource file
 Set m_pBitmap = LoadResPicture("NodeGrade", vbResBitmap)
 Set m_pMouseCur = LoadResPicture("Edit", vbResCursor)
 m_lGradeIndex = -1
 m_bDraw = True
End Sub

Private Sub Class_Terminate()
 Set m_pBitmap = Nothing
 Set m_pMouseCur = Nothing
 Set m_pExt = Nothing
 Set m_pApp = Nothing
End Sub

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 ICommand_Bitmap = m_pBitmap
End Property

Private Property Get ICommand_Caption() As String
 ICommand_Caption = "NodeGrade"
End Property

Private Property Get ICommand_Category() As String
 ICommand_Category = "Road Sediment Analyst"
End Property

Private Property Get ICommand_Checked() As Boolean
 'TODO: your implementation here
End Property

Private Property Get ICommand_Enabled() As Boolean
 'check for certain properties in extension
 If Not m_pExt Is Nothing Then
 If m_pExt.IsStarted And m_pExt.IsSetUp And Not m_pExt.HasTopology
Then
 ICommand_Enabled = True
 Else: ICommand_Enabled = False
 End If
 Else: ICommand_Enabled = False
 End If

160

End Property

Private Property Get ICommand_HelpContextID() As Long
 'TODO: your implementation here
End Property

Private Property Get ICommand_HelpFile() As String
 'TODO: your implementation here
End Property

Private Property Get ICommand_Message() As String
 ICommand_Message = "Adjust Road Grade"
End Property

Private Property Get ICommand_Name() As String
 ICommand_Name = "NodeGrade"
End Property

Private Sub ICommand_OnClick()
 On Error GoTo erh
 Dim pMxDoc As IMxDocument
 Set pMxDoc = m_pApp.Document
 Set m_pDisplay = pMxDoc.ActiveView.ScreenDisplay
 Set m_pFeatClass = m_pExt.RoadLayer.FeatureClass
 'create new snap agent
 Set m_pSnapAgent = New FeatureSnap
 With m_pSnapAgent
 Set .FeatureClass = m_pFeatClass
 .HitType = esriGeometryPartEndpoint
 End With
 'create new symbol
 Set m_pSymbol = New SimpleMarkerSymbol
 m_pSymbol.ROP2 = esriROPNotXOrPen
 Dim pMarkSym As IMarkerSymbol
 Set pMarkSym = m_pSymbol 'QI
 Dim myColor As IColor
 Set myColor = New RgbColor
 myColor.RGB = RGB(0, 0, 0)
 pMarkSym.Color = myColor
 pMarkSym.Size = 8
 'get the workspace to edit
 Dim pDS As IDataset
 Set pDS = m_pFeatClass
 Set m_pWksEdit = pDS.Workspace
 If Not m_pWksEdit.IsBeingEdited Then
 m_pWksEdit.StartEditing True
 End If
 'get grade field index
 m_lGradeIndex = m_pFeatClass.FindField(m_pExt.GradeName)

 'create new screen refresh
 Set m_pRefresh = New InvalidArea
 Set m_pRefresh.Display = m_pDisplay

 Exit Sub
erh:
 MsgBox "error in create flip cmd: " & Error
End Sub

161

Private Sub ICommand_OnCreate(ByVal hook As Object)
 Set m_pApp = hook
 Dim pId As New UID
 pId.Value = "RoadSedimentAnalyst.clsExt"
 Set m_pExt = m_pApp.FindExtensionByCLSID(pId)
End Sub

Private Property Get ICommand_Tooltip() As String
 ICommand_Tooltip = "Manualy Adjust Road Grade At Nodes"
End Property

Private Property Get ITool_Cursor() As esriCore.OLE_HANDLE
 ITool_Cursor = m_pMouseCur
End Property

Private Function ITool_Deactivate() As Boolean
 DrawSymbol m_pNewPoint
 Set m_pNewPoint = Nothing 'this will avoid marker leftovers
 Set m_pDisplay = Nothing
 Set m_pSymbol = Nothing

 If Not m_pWksEdit Is Nothing Then
 m_pWksEdit.StopEditing True
 End If
 Set m_pWksEdit = Nothing

 ITool_Deactivate = True
End Function

Private Function ITool_OnContextMenu(ByVal X As Long, ByVal Y As Long)
As Boolean
 ITool_OnContextMenu = True
End Function

Private Sub ITool_OnDblClick()
 'unused
End Sub

Private Sub ITool_OnKeyDown(ByVal keyCode As Long, ByVal Shift As Long)
 'TODO: your implementation here
End Sub

Private Sub ITool_OnKeyUp(ByVal keyCode As Long, ByVal Shift As Long)
 'TODO: your implementation here
End Sub

Private Sub ITool_OnMouseDown(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 If Not m_pNewPoint Is Nothing Then
 m_pFeatures = Util.FindAllFeaturesXPoint(m_pFeatClass, m_pNewPoint)
 m_pWksEdit.StartEditOperation
 If Button = 1 Then
 'increase grade
 AdjustGrade 1
 Else 'button is 2
 'decrease grade
 AdjustGrade -1
 End If
 m_pWksEdit.StartEditOperation

162

 End If
End Sub

Private Sub ITool_OnMouseMove(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 If Button = 0 Then
 DrawSymbol m_pNewPoint
 Set m_pNewPoint = m_pDisplay.DisplayTransformation.ToMapPoint(X, Y)
 m_bDraw = True
 DrawSymbol m_pNewPoint
 End If
End Sub

Private Sub ITool_OnMouseUp(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 'not used
End Sub

Private Sub ITool_Refresh(ByVal hDC As esriCore.OLE_HANDLE)
 'avoid a marker left on the line
 m_bDraw = False
End Sub

Sub DrawSymbol(pPoint)
 On Error GoTo erh
 If Not pPoint Is Nothing And m_bDraw Then 'the point is initialy
nothing
 m_pDisplay.StartDrawing m_pDisplay.hDC, esriNoScreenCache
 m_pSymbol.SetupDC m_pDisplay.hDC, m_pDisplay.DisplayTransformation
 m_pSnapAgent.Snap Nothing, pPoint, 100
 m_pSymbol.Draw pPoint
 m_pSymbol.ResetDC
 m_pDisplay.FinishDrawing
 End If
 Exit Sub
erh:
 MsgBox "error in draw symbol " & Error
End Sub

Private Sub AdjustGrade(iStep As Integer)
 If m_lGradeIndex > -1 Then
 Dim i As Integer
 For i = 0 To UBound(m_pFeatures)
 If Not m_pFeatures(i) Is Nothing Then
 m_pFeatures(i).Value(m_lGradeIndex) =
m_pFeatures(i).Value(m_lGradeIndex) + iStep
 m_pFeatures(i).Store
 m_pRefresh.Add m_pFeatures(i).Extent
 End If
 Next i
 m_pRefresh.Invalidate esriAllScreenCaches
 End If
End Sub

CLASS – clsOptions (clsOptions.cls)

Option Explicit

163

Implements ICommand
Private m_pApp As IApplication
Private m_pExtension As clsExt

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 'your implementation here
End Property

Private Property Get ICommand_Caption() As String
 ICommand_Caption = "Options"
End Property

Private Property Get ICommand_Category() As String
 ICommand_Category = "Road Sediment Analyst"
End Property

Private Property Get ICommand_Checked() As Boolean
 'your implementation here
End Property

Private Property Get ICommand_Enabled() As Boolean
 If Not m_pExtension Is Nothing Then
' If Not m_pExtension.IsAnalyzed Then
' ICommand_Enabled = True
' Else: ICommand_Enabled = False
' End If
 ICommand_Enabled = True
 Else: ICommand_Enabled = False
 End If
End Property

Private Property Get ICommand_HelpContextID() As Long
 'your implementation here
End Property

Private Property Get ICommand_HelpFile() As String
 'your implementation here
End Property

Private Property Get ICommand_Message() As String
 ICommand_Message = "Sets Analysis Options"
End Property

Private Property Get ICommand_Name() As String
 ICommand_Name = "options"
End Property

Private Sub ICommand_OnClick()
 'show the form and set it up
 Dim pOptFrm As frmOptions
 Set pOptFrm = New frmOptions
 pOptFrm.SetUpBoxes m_pExtension, m_pApp
 pOptFrm.Show vbModal
 'form is modal thread would interupt until form is done
 Set pOptFrm = Nothing
End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)

164

 Set m_pApp = hook
 Dim pId As New UID
 pId.Value = "RoadSedimentAnalyst.clsExt"
 Set m_pExtension = m_pApp.FindExtensionByCLSID(pId)
End Sub

Private Property Get ICommand_Tooltip() As String
 ICommand_Tooltip = "Sets Analysis Options"
End Property

CLASS – clsRmvCulv (clsRemoveCulv.cls)

Option Explicit

Implements ICommand
Implements ITool

Private m_pApp As IApplication
Private m_pDoc As IMxDocument
Private m_pExt As clsExt
Private m_pRoadLayer As IFeatureLayer
Private m_pCulvLayer As IFeatureLayer

Private m_pBitmap As IPictureDisp
Private m_pWksEdit As IWorkspaceEdit
Private m_pRefresh As IInvalidArea

Private m_pDisplay As IDisplay
Private m_pSymbol As ISymbol
Private m_pNewPoint As IPoint
Private m_pSnapAgent As IFeatureSnapAgent
' Variables used by the Error handler function - DO NOT REMOVE
Const c_ModuleFileName =
"C:\Evenflo\ThesisWorks\VBScripts\CrossDrainSpacer\clsRemoveCulvert.cls"

Private Sub Class_Initialize()
 On Error GoTo ErrorHandler

27: Set m_pBitmap = LoadResPicture("Remove", vbResBitmap)

 Exit Sub
ErrorHandler:
 HandleError True, "Class_Initialize " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub Class_Terminate()
 On Error GoTo ErrorHandler

38: Set m_pBitmap = Nothing
39: Set m_pExt = Nothing
40: Set m_pApp = Nothing

165

 Exit Sub
ErrorHandler:
 HandleError True, "Class_Terminate " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 On Error GoTo ErrorHandler

51: ICommand_Bitmap = m_pBitmap

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Bitmap " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Caption() As String
 On Error GoTo ErrorHandler

62: ICommand_Caption = "Remove Culvert"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Caption " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Category() As String
 On Error GoTo ErrorHandler

73: ICommand_Category = "Road Sediment Analyst"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Category " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Checked() As Boolean
 On Error GoTo ErrorHandler

 'TODO: your implementation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Checked " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

166

Private Property Get ICommand_Enabled() As Boolean
 On Error GoTo ErrorHandler

 'check for certain properties in extension
96: If Not m_pExt Is Nothing Then
97: If m_pExt.IsStarted And m_pExt.IsAnalyzed Then
98: ICommand_Enabled = True
99: Else: ICommand_Enabled = False
100: End If
101: Else: ICommand_Enabled = False
102: End If

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Enabled " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_HelpContextID() As Long
 On Error GoTo ErrorHandler

 'TODO: your implementation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_HelpContextID " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_HelpFile() As String
 On Error GoTo ErrorHandler

 'TODO: your implemetation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_HelpFile " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Message() As String
 On Error GoTo ErrorHandler

135: ICommand_Message = "Remove Culvert"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Message " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

167

Private Property Get ICommand_Name() As String
 On Error GoTo ErrorHandler

146: ICommand_Name = "Remove Culvert"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Name " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Sub ICommand_OnClick()
 On Error GoTo ErrorHandler

 Dim pMxDoc As IMxDocument
159: Set pMxDoc = m_pApp.Document
160: Set m_pDisplay = pMxDoc.ActiveView.ScreenDisplay
161: Set m_pRoadLayer = m_pExt.RoadLayer
162: Set m_pCulvLayer = m_pExt.CulvLayer
 'create new snap agent
164: Set m_pSnapAgent = New FeatureSnap
165: With m_pSnapAgent
166: Set .FeatureClass = m_pCulvLayer.FeatureClass
167: .HitType = esriGeometryPartBoundary
168: End With
 'create new symbol
170: Set m_pSymbol = New SimpleMarkerSymbol
171: m_pSymbol.ROP2 = esriROPNotXOrPen
 Dim pMarkSym As IMarkerSymbol
173: Set pMarkSym = m_pSymbol 'QI
 Dim myColor As IColor
175: Set myColor = New RgbColor
176: myColor.RGB = RGB(0, 0, 0)
177: pMarkSym.Color = myColor
178: pMarkSym.Size = 8
 'get the workspace to edit
 Dim pDS As IDataset
181: Set pDS = m_pRoadLayer.FeatureClass
182: Set m_pWksEdit = pDS.Workspace
 'start editing
184: m_pWksEdit.StartEditing True
 'create new screen refresh
186: Set m_pRefresh = New InvalidArea
187: Set m_pRefresh.Display = m_pDisplay

 Exit Sub
ErrorHandler:
 HandleError True, "ICommand_OnClick " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)
 On Error GoTo ErrorHandler

168

197: Set m_pApp = hook
198: Set m_pDoc = m_pApp.Document
 Dim pId As New UID
200: pId.Value = "RoadSedimentAnalyst.clsExt"
201: Set m_pExt = m_pApp.FindExtensionByCLSID(pId)

 Exit Sub
ErrorHandler:
 HandleError True, "ICommand_OnCreate " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Property Get ICommand_Tooltip() As String
 On Error GoTo ErrorHandler

212: ICommand_Tooltip = "Removes Culverts placed with Create Culvert
Tool"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Tooltip " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Sub RecalcSed(lCulId As Long, lSedx As Long, lSedProdx As Long,
_
 lDelPotx As Long, pRefresh As IInvalidArea)
 On Error GoTo ErrorHandler

 Dim pCul As IFeature
225: Set pCul = Util.FindOneFeature(m_pCulvLayer.FeatureClass,
"RSAID", lCulId)
226: If Not pCul Is Nothing Then
227: pCul.Value(lSedx) =
ConnectFnct.SumUpSed(m_pRoadLayer.FeatureClass, lSedProdx, "CULV", _
 lCulId) * pCul.Value(lDelPotx)
229: pCul.Store
230: pRefresh.Add pCul
231: End If

 'release memory
234: Set pCul = Nothing

 Exit Sub
ErrorHandler:
 HandleError False, "RecalcSed " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Property Get ITool_Cursor() As esriCore.OLE_HANDLE
 On Error GoTo ErrorHandler

169

 Exit Property
ErrorHandler:
 HandleError True, "ITool_Cursor " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Function ITool_Deactivate() As Boolean
 On Error GoTo ErrorHandler

256: DrawSymbol m_pNewPoint
257: Set m_pNewPoint = Nothing 'this will avoid marker leftovers
258: Set m_pDisplay = Nothing
259: Set m_pSymbol = Nothing

261: If m_pWksEdit.IsBeingEdited Then
262: m_pWksEdit.StopEditing True
263: End If
264: Set m_pWksEdit = Nothing
265: Set m_pRefresh = Nothing
266: Set m_pRoadLayer = Nothing
267: Set m_pCulvLayer = Nothing
268: Set m_pSnapAgent = Nothing

270: ITool_Deactivate = True

 Exit Function
ErrorHandler:
 HandleError True, "ITool_Deactivate " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function

Private Function ITool_OnContextMenu(ByVal X As Long, ByVal Y As Long)
As Boolean
 On Error GoTo ErrorHandler

 Exit Function
ErrorHandler:
 HandleError True, "ITool_OnContextMenu " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function

Private Sub ITool_OnDblClick()
 On Error GoTo ErrorHandler

 Exit Sub
ErrorHandler:

170

 HandleError True, "ITool_OnDblClick " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ITool_OnKeyDown(ByVal keyCode As Long, ByVal Shift As Long)
 On Error GoTo ErrorHandler

 Exit Sub
ErrorHandler:
 HandleError True, "ITool_OnKeyDown " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ITool_OnKeyUp(ByVal keyCode As Long, ByVal Shift As Long)
 On Error GoTo ErrorHandler

 Exit Sub
ErrorHandler:
 HandleError True, "ITool_OnKeyUp " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ITool_OnMouseDown(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 On Error GoTo ErrorHandler

 Dim pCulvFeat As IFeature
 Dim pPoint As IPoint
 Dim pSegments() As IFeature
 Dim pTopoOpt As ITopologicalOperator
 Dim pChild As IFeature

331: If Not m_pNewPoint Is Nothing Then
 'MsgBox "debug: point location is " & m_pNewPoint.X & " " &
m_pNewPoint.Y
' 'start editing
' m_pWksEdit.StartEditing True

335: Set pCulvFeat =
Util.FindFeatureXPoint(m_pCulvLayer.FeatureClass, m_pNewPoint)
 'get the feature intersected by the point
337: If Not pCulvFeat Is Nothing Then
 'MsgBox "debug: found culvert " & pCulvFeat.OID
 'identify required fields
 Dim lChx As Long, lIdx As Long, lCux As Long, lP1x As Long, lP2x
As Long
 Dim lP3x As Long, lRmx As Long, lTpx As Long, lFpx As Long
 Dim lSedProdx As Long, lDelPotx As Long, lSedx As Long
342: lChx = m_pRoadLayer.FeatureClass.FindField("CHILD")
343: lIdx = m_pRoadLayer.FeatureClass.FindField("RSAID")

171

344: lCux = m_pRoadLayer.FeatureClass.FindField("CULV")
345: lP1x = m_pRoadLayer.FeatureClass.FindField("PAR1")
346: lP2x = m_pRoadLayer.FeatureClass.FindField("PAR2")
347: lP3x = m_pRoadLayer.FeatureClass.FindField("PAR3")
348: lRmx = m_pCulvLayer.FeatureClass.FindField("REMCD")
349: lTpx = m_pRoadLayer.FeatureClass.FindField("TOPT")
350: lFpx = m_pRoadLayer.FeatureClass.FindField("FROMPT")
351: lSedx = m_pCulvLayer.FeatureClass.FindField("SED")
352: lDelPotx = m_pCulvLayer.FeatureClass.FindField("DELPOT")
353: lSedProdx = m_pRoadLayer.FeatureClass.FindField("SEDPROD")

 'start operation
356: m_pWksEdit.StartEditOperation

358: Set pPoint = pCulvFeat.Shape
 'verify the remove code for this culvert
 Select Case pCulvFeat.Value(lRmx)
 Case 0
 'if remove code is 0 can't remove
363: MsgBox "debug mesage: cannot remove this culvert"
364: m_pWksEdit.StopEditing False
 Exit Sub
 Case 1
367: 'MsgBox "check 1"
 'if code is 1 -> most common case, culvert was placed on the
line
 'get cursor into roads that satisfy the intersection filter
370: pSegments = ConnectFnct.IdentifyUpperLower(m_pRoadLayer,
pPoint, lTpx)
371: ' MsgBox "check 2"
372: If Not pSegments(0) Is Nothing And Not pSegments(1) Is
Nothing Then
 'the uppersegment will remain, lower will be deleted
 'set uppersegmnet's attributes as to maintain flow integrity
375: pSegments(0).Value(lChx) = pSegments(1).Value(lChx)
376: pSegments(0).Value(lCux) = pSegments(1).Value(lCux)
377: 'MsgBox "check 3"
 'change culvert for all parents of the upper segment
379: ConnectFnct.SetUpstream pSegments(1).Value(lCux),
m_pRoadLayer, _
 pSegments(0), lP1x, lP2x, lP3x, lCux
381: ' MsgBox "check 4"
 'set child of lower to be have upper as parent
383: ConnectFnct.ChangeOneParent m_pRoadLayer,
pSegments(1).Value(lChx), _
 pSegments(1).Value(lIdx),
pSegments(0).Value(lIdx), _
 lP1x, lP2x, lP3x, lIdx
386: ' MsgBox "check 5"
 'union the two road polylines
388: Set pTopoOpt = pSegments(0).Shape
389: Set pSegments(0).Shape =
pTopoOpt.Union(pSegments(1).Shape)
 'set upper to flow to lower's to point
391: pSegments(0).Value(lTpx) = pSegments(1).Value(lTpx)
 'add sediment values from both and assing to upper
393: ConnectFnct.SumAttrib pSegments(0), pSegments(1),
lSedProdx
394: pSegments(0).Store

172

395: ' MsgBox "check 6"
396: m_pRefresh.Add pSegments(0)
397: ' MsgBox "check 7"
 'remove the lower road segment
399: pSegments(1).Delete
400: pCulvFeat.Delete
 'recalculate sediment for culvert below the one being
removed
402: RecalcSed pSegments(0).Value(lCux), lSedx, lSedProdx,
lDelPotx, m_pRefresh
403: m_pRefresh.Invalidate esriAllScreenCaches

 'clean up
406: Set pSegments(0) = Nothing
407: Set pSegments(1) = Nothing
408: End If
 Case 2
 'if remove code is 2 there is no need to merge anything,
 'just rebuild the flow setting parents, child,
 'and culvert for all affected segments and remove culvert from
it's layer
413: pSegments = ConnectFnct.IdentifyUpperLower(m_pRoadLayer,
pPoint, lTpx)
414: ConnectFnct.ReuniteChild pSegments, lP1x, lP2x, lP3x,
lChx, lIdx
415: Set pChild = pSegments(UBound(pSegments))
416: If Not pChild Is Nothing Then
417: ConnectFnct.SetUpstream pChild.Value(lCux),
m_pRoadLayer, pChild, _
 lP1x, lP2x, lP3x, lCux
419: End If
 'recalculate sediment for culvert below the one being removed
421: RecalcSed pChild.Value(lCux), lSedx, lSedProdx, lDelPotx,
m_pRefresh
 'remove culvert
423: m_pRefresh.Add pCulvFeat.Extent
424: pCulvFeat.Delete
425: m_pRefresh.Invalidate esriAllScreenCaches

 'Clean up
 Dim i As Integer
429: For i = LBound(pSegments) To UBound(pSegments)
430: Set pSegments(i) = Nothing
431: Next i
432: End Select
433: 'MsgBox "check 8"
434: m_pWksEdit.StopEditOperation

 'display sediment
437: m_pExt.ShowTotalSed
(Util.SumValuesOnField(m_pCulvLayer.FeatureClass, lSedx))
 Else
 MsgBox "Error: Could Not Find a Culvert at Mouse Location"
438: End If
' m_pWksEdit.StopEditing True
' MsgBox "saved to database"
441: End If

 'release memory

173

444: Set pCulvFeat = Nothing
445: Set pTopoOpt = Nothing
446: Set pPoint = Nothing
447: Set pChild = Nothing

 Exit Sub
ErrorHandler:
451: m_pWksEdit.StopEditOperation
452: m_pWksEdit.UndoEditOperation
 'm_pWksEdit.StopEditing False
 HandleError True, "ITool_OnMouseDown " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ITool_OnMouseMove(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 On Error GoTo ErrorHandler

460: If Button = 0 Then
461: DrawSymbol m_pNewPoint
462: Set m_pNewPoint =
m_pDisplay.DisplayTransformation.ToMapPoint(X, Y)
463: DrawSymbol m_pNewPoint
464: End If

 Exit Sub
ErrorHandler:
 HandleError True, "ITool_OnMouseMove " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ITool_OnMouseUp(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 On Error GoTo ErrorHandler

 'not used

 Exit Sub
ErrorHandler:
 HandleError True, "ITool_OnMouseUp " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ITool_Refresh(ByVal hDC As esriCore.OLE_HANDLE)
 On Error GoTo ErrorHandler

 'avoid a marker left on the line
487: Set m_pNewPoint = Nothing

 Exit Sub
ErrorHandler:

174

 HandleError True, "ITool_Refresh " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Sub DrawSymbol(pPoint)
 On Error GoTo ErrorHandler

499: If Not pPoint Is Nothing Then 'the point is initialy nothing
500: m_pDisplay.StartDrawing m_pDisplay.hDC, esriNoScreenCache
501: m_pSymbol.SetupDC m_pDisplay.hDC,
m_pDisplay.DisplayTransformation
502: m_pSnapAgent.Snap Nothing, pPoint, 100
503: m_pSymbol.Draw pPoint
504: m_pSymbol.ResetDC
505: m_pDisplay.FinishDrawing
506: End If

 Exit Sub
ErrorHandler:
 HandleError True, "DrawSymbol " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

CLASS – clsRunAnalysis (clsRunAnalysis.cls)

Option Explicit

Implements ICommand

Private m_pApp As IApplication
Private m_pDoc As IMxDocument
Private m_pExtension As clsExt
Private m_pRoadLayer As IFeatureLayer
Private m_pCulvertLayer As IFeatureLayer
Private m_pDEMLayer As IRasterLayer
Private m_pWksEdit As IWorkspaceEdit
Private m_pRefresh As IInvalidArea
Private m_lRoadFieldInd() As Long
Private m_lCulFieldInd() As Long
Private m_pSedModel As ISedimentModel
' Variables used by the Error handler function - DO NOT REMOVE
Const c_ModuleFileName = "C:\CrossDrainSpacer\clsRunAnalysis.cls"
' Constant reflect file module name

Private Property Get ICommand_Enabled() As Boolean
 On Error GoTo ErrorHandler

 If Not m_pExtension Is Nothing Then
 If m_pExtension.HasTopology Then
 ICommand_Enabled = True
 Else: ICommand_Enabled = False

175

 End If
 Else: ICommand_Enabled = False
 End If

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Enabled " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Checked() As Boolean
 On Error GoTo ErrorHandler

 ' TODO: Add your implementation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Checked " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Name() As String
 On Error GoTo ErrorHandler

 ICommand_Name = "SedimentAnalyzer"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Name " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Caption() As String
 On Error GoTo ErrorHandler

 ICommand_Caption = "Analyze Sed"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Caption " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Tooltip() As String
 On Error GoTo ErrorHandler

 ICommand_Tooltip = "Run The Sediment Analysis"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Tooltip " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

176

Private Property Get ICommand_Message() As String
 On Error GoTo ErrorHandler

 ICommand_Message = "Runs The Sediment Analysis for Culvert System"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Message " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_HelpFile() As String
 On Error GoTo ErrorHandler

 ' TODO: Add your implementation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_HelpFile " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_HelpContextID() As Long
 On Error GoTo ErrorHandler

 ' TODO: Add your implementation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_HelpContextID " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 On Error GoTo ErrorHandler

 ' TODO: Add your implementation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Bitmap " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Category() As String
 On Error GoTo ErrorHandler

 ICommand_Category = "Road Sediment Analyst"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Category " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

177

Private Sub ICommand_OnCreate(ByVal hook As Object)
 On Error GoTo ErrorHandler

 Set m_pApp = hook
 Set m_pDoc = m_pApp.Document
 Set m_pRefresh = New InvalidArea
 Set m_pRefresh.Display = m_pDoc.ActiveView.ScreenDisplay
 Dim pId As New UID
 pId.Value = "RoadSedimentAnalyst.clsExt"
 Set m_pExtension = m_pApp.FindExtensionByCLSID(pId)

 Exit Sub
ErrorHandler:
 HandleError True, "ICommand_OnCreate " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ICommand_OnClick()
 On Error GoTo ErrorHandler

 'verify that the map units are set
 Dim units As esriUnits
 units = m_pDoc.FocusMap.MapUnits
 If units = esriUnknownUnits Or units = esriDecimalDegrees Or units =
esriPoints Or _
 units = esriNauticalMiles Then
 MsgBox "Map units must be set and/or in a road applicable system" &
vbLf & _
 "Please check map units!"
 Exit Sub
 End If

 'Get the sediment modeler
 Set m_pSedModel =
m_pApp.FindExtensionByName(m_pExtension.SedModelName)

 If m_pSedModel Is Nothing Then
 MsgBox "No Sediment Model could be found!" & vbLf & "Please check
extesions."
 Exit Sub
 End If

' 'disable buttons
' If m_pExtension.IsAnalyzed = False Then

 'get layers from extension
 Set m_pRoadLayer = m_pExtension.RoadLayer
 Set m_pCulvertLayer = m_pExtension.CulvLayer
 Set m_pDEMLayer = m_pExtension.DemLayer

 Dim success As Boolean

 Dim pWks As IWorkspace
 Dim pDS As IDataset
 Set pDS = m_pRoadLayer
 Set pWks = pDS.Workspace
 Set m_pWksEdit = pWks

178

 If m_pWksEdit.IsBeingEdited Then
 m_pWksEdit.StopEditing True
 End If

 'get field indexes in array
 m_lRoadFieldInd = Util.GetFieldIndexes(m_pRoadLayer.FeatureClass,
"road")
 'get grade field from extension
 m_lCulFieldInd = Util.GetFieldIndexes(m_pCulvertLayer.FeatureClass,
"culvert")

 'Setup rasters using the sediment modeler
 success = m_pSedModel.RunRasterAnalysis(m_pRoadLayer.FeatureClass,
m_pDEMLayer.Raster)
 If Not success Then Exit Sub

 'get the newly created distace to streams from the sed model and set
it.
 m_pExtension.DistToStreamsLayer = m_pSedModel.DistanceToStream
 m_pExtension.MaxDeliveryDistance = m_pSedModel.MaxDeliveryDistance
 MsgBox "Raster analysis complete"

 'set the default values given by the user
 m_pSedModel.DefaultRoadAge = m_pExtension.DefaultRoadAge
 m_pSedModel.DefaultRoadGrade = m_pExtension.DefaultRoadGrade
 m_pSedModel.DefaultRoadSurface = m_pExtension.DefaultRoadSurface
 m_pSedModel.DefaultRoadTraffic = m_pExtension.DefaultRoadTraffic
 m_pSedModel.DefaultRoadWidth = m_pExtension.DefaultRoadWidth
 m_pSedModel.DefaultSlopeCover = m_pExtension.DefaultSlopeCover

 If Not m_pWksEdit.IsBeingEdited Then
 m_pWksEdit.StartEditing False
 End If

 success = SetSedProd()
 MsgBox "set Sediment production " & success

 success = SetCulSed()
 MsgBox "set Culvert Sediment " & success

 m_pRefresh.Invalidate esriAllScreenCaches
 m_pWksEdit.StopEditing True

 'display total sediment delivered by culverts
 m_pExtension.ShowTotalSed
(Util.SumValuesOnField(m_pCulvertLayer.FeatureClass, _
 m_lCulFieldInd(3)))

 'release buttons
 m_pExtension.IsAnalyzed = True

 'refresh screen
 m_pDoc.ActiveView.Refresh
 Exit Sub
ErrorHandler:
 HandleError True, "ICommand_OnClick " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4

179

End Sub

Private Function SetCulSed() As Boolean
 On Error GoTo ErrorHandler

 Dim c_lCulIdx As Long
 Dim c_lSedProdx As Long
 Dim c_lSedx As Long
 Dim c_lDelPotx As Long
 c_lCulIdx = m_lCulFieldInd(0)
 c_lSedProdx = m_lRoadFieldInd(10)
 c_lSedx = m_lCulFieldInd(3)
 c_lDelPotx = m_lCulFieldInd(2)

 'get cursor into culvert layer
 Dim pFilter As IQueryFilter
 Set pFilter = New QueryFilter
 Dim pCulCursor As IFeatureCursor
 Set pCulCursor = m_pCulvertLayer.Search(Nothing, False)
 Dim pCul As IFeature
 Dim pPoint As IPoint
 Set pCul = pCulCursor.NextFeature
 Do While Not pCul Is Nothing
 Set pPoint = pCul.Shape
 'set delivery potential if not already set by other operation
 If pCul.Value(c_lDelPotx) <> 1 Then
 pCul.Value(c_lDelPotx) = m_pSedModel.GetDeliveryPotential(pPoint)
 End If
 'set sediment per culvert
 ' !! "CULV" is HARD CODED name and NOT SAFE !!
 pCul.Value(c_lSedx) =
ConnectFnct.SumUpSed(m_pRoadLayer.FeatureClass, c_lSedProdx, _
 "CULV", pCul.Value(c_lCulIdx)) *
pCul.Value(c_lDelPotx)
 pCul.Store
 Set pCul = pCulCursor.NextFeature
 Loop
 SetCulSed = True

 Exit Function
ErrorHandler:
 SetCulSed = False
 HandleError True, "SetCulSed " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function

Private Function SetSedProd() As Boolean
 On Error GoTo ErrorHandler

 Dim c_lSedProdx As Long
 c_lSedProdx = m_lRoadFieldInd(10)

 'get cursor into roads
 Dim pCursor As IFeatureCursor
 Set pCursor = m_pRoadLayer.Search(Nothing, False)
 Dim pRoadSeg As IFeature
 Set pRoadSeg = pCursor.NextFeature
 Do While Not pRoadSeg Is Nothing

180

 pRoadSeg.Value(c_lSedProdx) =
m_pSedModel.GetSedimentProduction(pRoadSeg)
 pRoadSeg.Store
 Set pRoadSeg = pCursor.NextFeature
 Loop
 SetSedProd = True

 Exit Function
ErrorHandler:
 SetSedProd = False
 HandleError True, "SetSedProd " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function

CLASS – clsSedBox (clsSedBox.cls)

Option Explicit

Implements ICommand
Implements IToolControl

Private m_pApp As IApplication
Private WithEvents m_pExt As clsExt

Private Sub Class_Terminate()
 Set m_pApp = Nothing
 Set m_pExt = Nothing
End Sub

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE

End Property

Private Property Get ICommand_Caption() As String
 ICommand_Caption = "SedBox"
End Property

Private Property Get ICommand_Category() As String
 ICommand_Category = "Road Sediment Analyst"
End Property

Private Property Get ICommand_Checked() As Boolean

End Property

Private Property Get ICommand_Enabled() As Boolean
 'check for certain properties in extension
 If Not m_pExt Is Nothing Then
 If m_pExt.IsStarted And m_pExt.IsAnalyzed Then
 ICommand_Enabled = True
 Else
 ICommand_Enabled = False
 End If
 Else
 ICommand_Enabled = False

181

 End If
End Property

Private Property Get ICommand_HelpContextID() As Long

End Property

Private Property Get ICommand_HelpFile() As String

End Property

Private Property Get ICommand_Message() As String
 ICommand_Message = "Display Total Sediment"
End Property

Private Property Get ICommand_Name() As String
 ICommand_Name = "TotalSedBox"
End Property

Private Sub ICommand_OnClick()

End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)
 Set m_pApp = hook
 Dim pId As New UID
 pId.Value = "RoadSedimentAnalyst.clsExt"
 Set m_pExt = m_pApp.FindExtensionByCLSID(pId)
End Sub

Private Property Get ICommand_Tooltip() As String

End Property

Private Property Get IToolControl_hWnd() As esriCore.OLE_HANDLE
 IToolControl_hWnd = frmTotSed.tboTotSed.hwnd
End Property

Private Function IToolControl_OnDrop(ByVal barType As
esriCore.esriCmdBarType) As Boolean
 If barType = esriCmdBarTypeToolbar Then
 IToolControl_OnDrop = True
 End If
End Function

Private Sub IToolControl_OnFocus(ByVal complete As
esriCore.ICompletionNotify)
 'Set pCompNotify = complete
 complete.SetComplete
End Sub

Private Sub m_pExt_IsStopping()
 frmTotSed.tboTotSed.Text = ""
End Sub

Private Sub m_pExt_ShowSediment(amount As Double)
 frmTotSed.tboTotSed.Text = Math.Round(amount, 3)
End Sub

182

CLASS – clsSegGrade (clsSegGrade.cls)

Option Explicit

Implements ICommand
Implements ITool

Private m_pApp As IApplication
Private m_pBitmap As IPictureDisp
Private WithEvents m_pExt As clsExt
Private m_pFeatClass As IFeatureClass
Private m_pWksEdit As IWorkspaceEdit
Private m_pRefresh As IInvalidArea
Private m_lGradeIndex As Long
Private m_pNewPoint As IPoint
Private m_pDisplay As IDisplay
Private m_frmGF As frmGradeField
Private m_pFeatSel As IFeatureSelection
Private m_pFeature As IFeature

Private Sub Class_Initialize()
 'load the button image from the resource file
 Set m_pBitmap = LoadResPicture("Grade", vbResBitmap)
 m_lGradeIndex = -1
End Sub

Private Sub Class_Terminate()
 Set m_pBitmap = Nothing
 Set m_pExt = Nothing
 Set m_pApp = Nothing
End Sub

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 ICommand_Bitmap = m_pBitmap
End Property

Private Property Get ICommand_Caption() As String
 ICommand_Caption = "SegmentGrade"
End Property

Private Property Get ICommand_Category() As String
 ICommand_Category = "Road Sediment Analyst"
End Property

Private Property Get ICommand_Checked() As Boolean
 'TODO: your implementation here
End Property

Private Property Get ICommand_Enabled() As Boolean
 'check for certain properties in extension
 If Not m_pExt Is Nothing Then
 If m_pExt.IsStarted And m_pExt.IsSetUp And Not m_pExt.HasTopology
Then
 ICommand_Enabled = True
 Else: ICommand_Enabled = False

183

 End If
 Else: ICommand_Enabled = False
 End If
End Property

Private Property Get ICommand_HelpContextID() As Long
 'TODO: your implementation here
End Property

Private Property Get ICommand_HelpFile() As String
 'TODO: your implementation here
End Property

Private Property Get ICommand_Message() As String
 ICommand_Message = "Adjust Road Grade"
End Property

Private Property Get ICommand_Name() As String
 ICommand_Name = "Grade"
End Property

Private Sub ICommand_OnClick()
 On Error GoTo erh
 Dim pMxDoc As IMxDocument
 Set pMxDoc = m_pApp.Document
 Set m_pDisplay = pMxDoc.ActiveView.ScreenDisplay
 Set m_pFeatClass = m_pExt.RoadLayer.FeatureClass
 'set selcetion
 Set m_pFeatSel = m_pExt.RoadLayer
 'get the workspace to edit
 Dim pDS As IDataset
 Set pDS = m_pFeatClass
 Set m_pWksEdit = pDS.Workspace
 If Not m_pWksEdit.IsBeingEdited Then
 m_pWksEdit.StartEditing True
 End If
 'get grade field index
 m_lGradeIndex = m_pFeatClass.FindField(m_pExt.GradeName)

 'show form
 Set m_frmGF = New frmGradeField
 'move to right hand corner
 m_frmGF.Show vbModeless

 'create new screen refresh
 Set m_pRefresh = New InvalidArea
 Set m_pRefresh.Display = m_pDisplay

 Exit Sub
erh:
 MsgBox "error in create SegGrade cmd: " & Error
End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)
 Set m_pApp = hook
 Dim pId As New UID
 pId.Value = "RoadSedimentAnalyst.clsExt"
 Set m_pExt = m_pApp.FindExtensionByCLSID(pId)
End Sub

184

Private Property Get ICommand_Tooltip() As String
 ICommand_Tooltip = "Manualy Adjust A Road Segment's Grade "
End Property

Private Property Get ITool_Cursor() As esriCore.OLE_HANDLE

End Property

Private Function ITool_Deactivate() As Boolean
 Set m_pNewPoint = Nothing
 Set m_pDisplay = Nothing
 Set m_pFeature = Nothing
 Set m_pFeatSel = Nothing
 Set m_pFeatClass = Nothing

 If Not m_pWksEdit Is Nothing Then
 m_pWksEdit.StopEditing True
 End If
 Set m_pWksEdit = Nothing

 m_frmGF.Hide
 'destroy the form
 Unload m_frmGF
 Set m_frmGF = Nothing

 ITool_Deactivate = True
End Function

Private Function ITool_OnContextMenu(ByVal X As Long, ByVal Y As Long)
As Boolean
 ITool_OnContextMenu = True
End Function

Private Sub ITool_OnDblClick()

End Sub

Private Sub ITool_OnKeyDown(ByVal keyCode As Long, ByVal Shift As Long)
 'TODO: your implementation here
End Sub

Private Sub ITool_OnKeyUp(ByVal keyCode As Long, ByVal Shift As Long)
 'TODO: your implementation here
End Sub

Private Sub ITool_OnMouseDown(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 On Error GoTo erh
 If Button = 1 Then
 'make point
 Set m_pNewPoint = m_pDisplay.DisplayTransformation.ToMapPoint(X, Y)
 'get feature that intesects point
 Set m_pFeature = Util.FindFeatureNearPoint(m_pFeatClass,
m_pNewPoint, 10)
 If m_pFeature Is Nothing Then Exit Sub
 'get grade value of this feature
 Dim iGradeVal As Integer
 iGradeVal = m_pFeature.Value(m_lGradeIndex)

185

 'select this feature
 m_pFeatSel.Clear
 m_pFeatSel.Add m_pFeature
 m_pRefresh.Add m_pFeature
 m_pRefresh.Invalidate esriAllScreenCaches
 'set up form and set it's position
 m_frmGF.GradeValue = iGradeVal
 m_frmGF.SetFocus
 Exit Sub
 Else 'button is 2
 If Not m_pFeature Is Nothing Then
 'get it's value
 If IsNumeric(m_frmGF.GradeValue) Then
 'set the feature's grade to this value
 m_pWksEdit.StartEditOperation
 m_pFeature.Value(m_lGradeIndex) = CInt(m_frmGF.GradeValue)
 m_pFeature.Store
 m_pWksEdit.StopEditOperation
 'deselect feature
 m_pFeatSel.Clear
 m_pRefresh.Invalidate esriAllScreenCaches
 m_frmGF.GradeValue = ""
 End If
 End If
 End If
 Exit Sub
erh:
 MsgBox "error " & Error
End Sub

Private Sub ITool_OnMouseMove(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 'unused
End Sub

Private Sub ITool_OnMouseUp(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 'not used
End Sub

Private Sub ITool_Refresh(ByVal hDC As esriCore.OLE_HANDLE)
 'unused
End Sub

Private Sub m_pExt_IsStopping()
 If Not m_frmGF Is Nothing Then
 m_frmGF.Hide
 Set m_frmGF = Nothing
 End If
 If Not m_pWksEdit Is Nothing Then
 If m_pWksEdit.IsBeingEdited Then
 m_pWksEdit.StopEditing True
 End If
 End If
End Sub

186

CLASS – clsSetUpFlow (clsSetUpFlow.cls)

Option Explicit

Implements ICommand

Private m_pApp As IApplication
Private m_pDoc As IMxDocument
Private m_pExtension As clsExt
Private m_pRoadLayer As IFeatureLayer
Private m_pStreamLayer As IFeatureLayer
Private m_pCulvertLayer As IFeatureLayer

Private WithEvents m_pFrm As frmChildDec
Private m_pWksEdit As IWorkspaceEdit
Private m_pRefresh As IInvalidArea
Private m_colUserDec As Collection
Private m_lRoadFieldInd() As Long
Private m_lCulFieldInd() As Long

Private m_ErLog() As Long

' Variables used by the Error handler function - DO NOT REMOVE
Const c_ModuleFileName =
"C:\Evenflo\ThesisWorks\VBScripts\CrossDrainSpacer\clsSetUpFlow.cls"

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 On Error GoTo ErrorHandler

 'TODO: your implementation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Bitmap " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Caption() As String
 On Error GoTo ErrorHandler

 ICommand_Caption = "Flow SetUp"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Caption " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Category() As String
 On Error GoTo ErrorHandler

 ICommand_Category = "Road Sediment Analyst"

 Exit Property
ErrorHandler:

187

 HandleError True, "ICommand_Category " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Checked() As Boolean
 On Error GoTo ErrorHandler

 'TODO: your implementation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Checked " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Enabled() As Boolean
 On Error GoTo ErrorHandler

 If Not m_pExtension Is Nothing Then
 If m_pExtension.IsSetUp And (Not m_pExtension.HasTopology) Then
 ICommand_Enabled = True
 Else: ICommand_Enabled = False
 End If
 Else: ICommand_Enabled = False
 End If

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Enabled " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_HelpContextID() As Long
 On Error GoTo ErrorHandler

 'TODO: your implementation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_HelpContextID " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_HelpFile() As String
 On Error GoTo ErrorHandler

 'TODO: your implementation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_HelpFile " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

188

Private Property Get ICommand_Message() As String
 On Error GoTo ErrorHandler

 ICommand_Message = "Setup the Ditch Water Flow of a Road System"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Message " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Name() As String
 On Error GoTo ErrorHandler

 ICommand_Name = "Flow_SetUp"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Name " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Sub ICommand_OnClick()
 On Error GoTo ErrorHandler

 'disable buttons
 m_pExtension.HasTopology = False

 'get layers from extension
 Set m_pRoadLayer = m_pExtension.RoadLayer
 Set m_pStreamLayer = m_pExtension.StreamLayer
 Set m_pCulvertLayer = m_pExtension.CulvLayer

 Dim success As Boolean
 Dim pRoadCulvSelSet As ISelectionSet

 Dim pWks As IWorkspace
 Dim pDS As IDataset
 Set pDS = m_pRoadLayer
 Set pWks = pDS.Workspace
 Set m_pWksEdit = pWks

 '1
 If m_pWksEdit.IsBeingEdited Then
 m_pWksEdit.StopEditing True
 End If
 success = Util.CreateRSAFields(m_pRoadLayer.FeatureClass, _
 m_pCulvertLayer.FeatureClass)
 'get field indexes in arrays
 m_lRoadFieldInd = Util.GetFieldIndexes(m_pRoadLayer.FeatureClass,
"road")
 m_lCulFieldInd = Util.GetFieldIndexes(m_pCulvertLayer.FeatureClass,
"culvert")
 MsgBox "created fields " & success

 '2
 If Not m_pWksEdit.IsBeingEdited Then

189

 m_pWksEdit.StartEditing False
 End If
 'give unique identifiers to road segments
 success = SetUniqueID()
 MsgBox "set unique ids " & success

 '2
 m_pWksEdit.StartEditing False
 success = SetStreamCross()
 'm_pWKSEdit.StopEditing True
 m_pRefresh.Invalidate esriAllScreenCaches
 MsgBox "set up stream intersections" & success

 '3
 m_ErLog = SplitRoadsAtExistingCulverts()
 MsgBox "set up existing culverts"

 '4
 'm_pWKSEdit.StartEditing False
 success = SetEndPointsId()
 MsgBox "set end points id " & success
 'm_pWKSEdit.StopEditing True

 '5
 success = CheckDownStreamConnect()

 If success Then
 success = SetNetworkTopology()
 DisplayErrorReport success
 End If

 Exit Sub
ErrorHandler:
 'this is needed to stop editing wks if anything went wrong
 m_pWksEdit.StopEditing False
 HandleError True, "ICommand_OnClick " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)
 On Error GoTo ErrorHandler

 Set m_pApp = hook
 Set m_pDoc = m_pApp.Document
 Set m_pRefresh = New InvalidArea
 Set m_pRefresh.Display = m_pDoc.ActiveView.ScreenDisplay
 Dim pId As New UID
 pId.Value = "RoadSedimentAnalyst.clsExt"
 Set m_pExtension = m_pApp.FindExtensionByCLSID(pId)

 Exit Sub
ErrorHandler:
 HandleError True, "ICommand_OnCreate " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

190

Private Property Get ICommand_Tooltip() As String
 On Error GoTo ErrorHandler

 ICommand_Tooltip = "Run The Analysis For Placing Culvert Operations"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Tooltip " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

'has to run inside an edit session.
Private Function SetUniqueID() As Boolean
 Dim pFeatCur As IFeatureCursor
 Dim pFeat As IFeature
 Dim lCounter As Long
 Dim lFIndex As Long

 On Error GoTo ErrorHandler

 'Select all roads in the layer
 Set pFeatCur = m_pRoadLayer.Search(Nothing, False)
 Set pFeat = pFeatCur.NextFeature
 lCounter = 1
 lFIndex = m_lRoadFieldInd(0)

 If lFIndex = -1 Then
 MsgBox "Required Field not found !", vbCritical
 Exit Function
 End If

 Do While Not pFeat Is Nothing
 pFeat.Value(lFIndex) = lCounter
 pFeat.Store
 lCounter = lCounter + 1

 Set pFeat = pFeatCur.NextFeature
 Loop

 SetUniqueID = True
 Exit Function

ErrorHandler:
 SetUniqueID = False
 HandleError True, "SetUniqueID " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4

End Function

'has to run inside edit session
Private Function SetEndPointsId() As Boolean
 On Error GoTo ErrorHandler

 'select all features in m_pRoadLayer
 Dim pFeatCur As IFeatureCursor

191

 Set pFeatCur = m_pRoadLayer.Search(Nothing, False)

 Dim pRoadSeg As IFeature
 Set pRoadSeg = pFeatCur.NextFeature
 Dim pPolyline As IPolyline
 Dim pEndPoints As IPointCollection
 Set pEndPoints = New Multipoint

 'get required field indexes
 Dim lFPIdx As Long, lTPIdx As Long
 lFPIdx = m_lRoadFieldInd(3)
 lTPIdx = m_lRoadFieldInd(4)

 'get max point number
 Dim lMaxPointId As Long
 lMaxPointId = Util.GetMaxOfFields(m_pRoadLayer.FeatureClass, lFPIdx,
lTPIdx)

 'add all end points to a collection
 Do While Not pRoadSeg Is Nothing
 Set pPolyline = pRoadSeg.Shape
 pEndPoints.AddPoint pPolyline.FromPoint
 pEndPoints.AddPoint pPolyline.ToPoint
 Set pRoadSeg = pFeatCur.NextFeature

 'symplify if necessary
 Dim pTopoOp As ITopologicalOperator
 Set pTopoOp = pEndPoints
 If Not pTopoOp.IsSimple Then pTopoOp.Simplify

 Dim pPoint As IPoint
 Dim pFilter As ISpatialFilter
 Set pFilter = New SpatialFilter
 pFilter.SpatialRel = esriSpatialRelTouches
 'go through each point and set road from and to ids
 Dim counter As Integer
 For counter = 0 To pEndPoints.PointCount - 1
 Set pPoint = pEndPoints.Point(counter)
 Set pFilter.Geometry = pPoint
 Set pFeatCur = m_pRoadLayer.Search(pFilter, False)
 Set pRoadSeg = pFeatCur.NextFeature
 Do While Not pRoadSeg Is Nothing
 Set pPolyline = pRoadSeg.Shape
 If pPolyline.FromPoint.Compare(pPoint) = 0 Then
 If pRoadSeg.Value(lFPIdx) = 0 Then
 pRoadSeg.Value(lFPIdx) = lMaxPointId + counter + 1
 pRoadSeg.Store
 End If
 Else
 If pRoadSeg.Value(lTPIdx) = 0 Then
 pRoadSeg.Value(lTPIdx) = lMaxPointId + counter + 1
 pRoadSeg.Store
 End If
 End If
 Set pRoadSeg = pFeatCur.NextFeature
 Loop
 Next counter

 Loop

192

 SetEndPointsId = True
 Exit Function

ErrorHandler:
 SetEndPointsId = False
 HandleError True, "SetEndPointsID " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4

End Function

Private Function SetAllParents() As Boolean
 On Error GoTo ErrorHandler

 Dim lFromNode As Long
 Dim pRoad As IFeature
 Dim lParents() As Long
 Dim lChildren() As Long
 Dim lRoadFrom As Long
 Dim lRoadTo As Long
 Dim lTemp As Long
 ReDim undecidedChild(0) As Long

 'get required field indexes
 Dim lFPIdx As Long, lIDIdx As Long, lTPIdx As Long
 Dim lP1Idx As Long, lP2Idx As Long, lP3Idx As Long
 Dim lChIdx As Long
 lFPIdx = m_lRoadFieldInd(3)
 lIDIdx = m_lRoadFieldInd(0)
 lTPIdx = m_lRoadFieldInd(4)
 lP1Idx = m_lRoadFieldInd(5)
 lP2Idx = m_lRoadFieldInd(6)
 lP3Idx = m_lRoadFieldInd(7)
 lChIdx = m_lRoadFieldInd(8)

 'select all roads
 Dim pFeatCur As IFeatureCursor
 Set pFeatCur = m_pRoadLayer.Search(Nothing, False)

 Set pRoad = pFeatCur.NextFeature
 Do While Not pRoad Is Nothing
 lRoadFrom = pRoad.Value(lFPIdx)
 lRoadTo = pRoad.Value(lTPIdx)
 'get parents
 lParents() = FindConnected(lIDIdx, "TOPT = " & lRoadFrom)
 'set parents only if they were not forced -1 before (inserting a
culvert could do that)
 If pRoad.Value(lP1Idx) <> -1 Then pRoad.Value(lP1Idx) = lParents(0)
 If pRoad.Value(lP2Idx) <> -1 Then pRoad.Value(lP2Idx) = lParents(1)
 If pRoad.Value(lP3Idx) <> -1 Then pRoad.Value(lP3Idx) = lParents(2)
 'get children
 lChildren() = FindConnected(lIDIdx, "FROMPT = " & lRoadTo)
 lTemp = ConnectFnct.CheckUniqueChild(lChildren)
 'set child only if a child was not forced -1 before (when inserting
a culvert)
 If lTemp >= -1 Then
 If pRoad.Value(lChIdx) <> -1 Then pRoad.Value(lChIdx) = lTemp
 Else
 'this should be taken out

193

 'check downstream connect has already fixed the multiple children
problem
 MsgBox "Network Topology Error: found more than one child at
segment " & pRoad.Value(lIDIdx)
 End If

 pRoad.Store
 Set pRoad = pFeatCur.NextFeature
 Loop

 SetAllParents = True
 Exit Function
ErrorHandler:
 SetAllParents = False
 HandleError True, "SetAllParents " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function

Private Function FindConnected(lIDIdx As Long, sQueryString As String)
As Long()
 On Error GoTo ErrorHandler

 Dim connectedID(2) As Long
 Dim pConSeg As IFeature
 Dim pFeatCur As IFeatureCursor

 'define query
 Dim pQuery As IQueryFilter
 Set pQuery = New QueryFilter
 pQuery.WhereClause = sQueryString

 'search for roads that end with the input road from point
 Set pFeatCur = m_pRoadLayer.Search(pQuery, False)
 Set pConSeg = pFeatCur.NextFeature 'pConSeg is now the first connected
segment

 'loop three times. Three connections maximum
 Dim i As Integer
 For i = 0 To 2
 If Not pConSeg Is Nothing Then
 connectedID(i) = pConSeg.Value(lIDIdx)
 Else: connectedID(i) = -1
 End If
 Set pConSeg = pFeatCur.NextFeature
 Next i

 FindConnected = connectedID

 Exit Function
ErrorHandler:
 HandleError False, "FindConnected " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function

Private Function SetCulverts() As Boolean
 On Error GoTo ErrorHandler

194

 Dim lTPIdx As Long, lCuIdx As Long
 lTPIdx = m_lRoadFieldInd(4)
 lCuIdx = m_lRoadFieldInd(9)

 Dim maxCulvID As Long
 Dim curCulvID As Long
 Dim lCRSAID As Long
 lCRSAID = m_lCulFieldInd(0)
 maxCulvID = Util.GetMaxValue(m_pCulvertLayer.FeatureClass, lCRSAID)
 If maxCulvID = -2147483648# Then
 maxCulvID = 0
 End If
 Debug.Print "max culv no is now : " & maxCulvID

 Dim lP1x As Long, lP2x As Long, lP3x As Long
 lP1x = m_lRoadFieldInd(5)
 lP2x = m_lRoadFieldInd(6)
 lP3x = m_lRoadFieldInd(7)

 'select all features with no child
 Dim pCulvSelSet As ISelectionSet
 Dim pFilter As IQueryFilter
 Set pFilter = New QueryFilter
 pFilter.WhereClause = "CHILD = -1"
 Dim pRoadDS As IDataset
 Set pRoadDS = m_pRoadLayer
 Set pCulvSelSet = m_pRoadLayer.FeatureClass.Select(pFilter, _
 esriSelectionTypeHybrid, esriSelectionOptionNormal,
_
 pRoadDS.Workspace)
 Dim pFeatCur As IFeatureCursor
 pCulvSelSet.Search Nothing, False, pFeatCur
 Dim pFeat As IFeature
 Set pFeat = pFeatCur.NextFeature

 Debug.Print "child = -1 count = " & pCulvSelSet.count

 'Loop and select all features that flow to same point
 Dim pToFilter As IQueryFilter
 Set pToFilter = New QueryFilter
 Dim pToFeatCur As IFeatureCursor
 Dim pSameToFeat As IFeature
 Dim pNewCulv As IFeature
 Dim pPolyline As IPolyline
 Dim pExistingCulvert As IFeature
 Dim existingRSAID As Long

 Do While Not pFeat Is Nothing
 Debug.Print pFeat.OID
 pToFilter.WhereClause = "TOPT = " & pFeat.Value(lTPIdx)
 pCulvSelSet.Search pToFilter, False, pToFeatCur

 Set pSameToFeat = pToFeatCur.NextFeature
 'add a culvert to the culvert layer with its RSAID specified here
 If Not pSameToFeat Is Nothing Then
 'see if it there already is a culvert at the TOPT location
 Set pPolyline = pSameToFeat.Shape

195

 Set pExistingCulvert =
Util.FindFeatureNearPoint(m_pCulvertLayer.FeatureClass, _
 pPolyline.ToPoint, 0.000000001)

 If Not pExistingCulvert Is Nothing Then
 'there is no need to create a new culvert feature; use this one
 'check to see if existing culvert already has an RSAID value
 existingRSAID = pExistingCulvert.Value(lCRSAID)
 If existingRSAID > 0 Then
 'there is no need for a new ID entry; use this one
 curCulvID = existingRSAID 'this value is used below!!!!
 Else
 'must create new id for existing culvert
 maxCulvID = maxCulvID + 1
 curCulvID = maxCulvID 'this value is used below!!!!!
 pExistingCulvert.Value(lCRSAID) = curCulvID
 pExistingCulvert.Store
 End If
 Else 'Could not find a feature in the culvert layer at the
specific location
 'must create a new culvert
 Set pNewCulv = m_pCulvertLayer.FeatureClass.CreateFeature
 Set pNewCulv.Shape = pPolyline.ToPoint
 'must create new id for the new culvert
 maxCulvID = maxCulvID + 1
 curCulvID = maxCulvID 'this value is used below!!!!!
 pNewCulv.Value(lCRSAID) = curCulvID
 pNewCulv.Store
 m_pRefresh.Add pNewCulv
 End If
 End If

 'go through the all features that flow to same pt and set them to
flow to this culvert
 Do While Not pSameToFeat Is Nothing
 pSameToFeat.Value(lCuIdx) = curCulvID
 pSameToFeat.Store
 'recursevly follow upstream and set all parents to this culvert
 ConnectFnct.SetUpstream curCulvID, m_pRoadLayer, pSameToFeat,
lP1x, lP2x, lP3x, lCuIdx
 pCulvSelSet.RemoveList 1, pSameToFeat.OID
 Debug.Print "selection has " & pCulvSelSet.count
 Set pSameToFeat = pToFeatCur.NextFeature
 Loop

 Set pFeat = pFeatCur.NextFeature
 Loop

 SetCulverts = True
 Exit Function
ErrorHandler:
 SetCulverts = False
 HandleError True, "SetCulverts " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function

Public Function SetStreamCross() As Boolean
 On Error GoTo ErrorHandler

196

 Dim lP1x As Long, lP2x As Long, lP3x As Long, lChx As Long, lIdx As
Long, lFpx As Long, lTpx As Long
 lP1x = m_lRoadFieldInd(5)
 lP2x = m_lRoadFieldInd(6)
 lP3x = m_lRoadFieldInd(7)
 lChx = m_lRoadFieldInd(8)
 lIdx = m_lRoadFieldInd(0)
 lTpx = m_lRoadFieldInd(4)
 lFpx = m_lRoadFieldInd(3)

 'get the maximum existing point number in the road table
 Dim lMaxPointId As Long
 lMaxPointId = Util.GetMaxOfFields(m_pRoadLayer.FeatureClass, lFpx,
lTpx)

 Dim lMaxId As Long
 lMaxId = Util.GetMaxValue(m_pRoadLayer.FeatureClass, lIdx)
 'when there are no features exit
 If lMaxId = -2147483648# Then
 MsgBox "no roads are present"
 Exit Function
 End If
 Debug.Print "max road RSAID is" & lMaxId

 'get name of the shape field
 Dim sShapeName As String
 sShapeName = m_pRoadLayer.FeatureClass.ShapeFieldName
 'Select all Roads
 Dim pRoadCur As IFeatureCursor
 Set pRoadCur = m_pRoadLayer.Search(Nothing, False)
 'Spatial filter for intersections
 Dim pSpFilter As ISpatialFilter
 Set pSpFilter = New SpatialFilter
 Dim pStreamCur As IFeatureCursor
 Dim pStream As IFeature
 With pSpFilter
 .GeometryField = sShapeName
 .SpatialRel = esriSpatialRelIntersects
 End With
 'instantiate a stream feature selection
 Dim pStreamFeatSel As IFeatureSelection
 Set pStreamFeatSel = m_pStreamLayer
 pStreamFeatSel.Clear
 'get first road
 Dim pRoad As IFeature
 Set pRoad = pRoadCur.NextFeature
 Do While Not pRoad Is Nothing
 'set spatial filter to current road
 Set pSpFilter.Geometry = pRoad.Shape
 'search for Streams that intersect curent road
 Set pStreamCur = m_pStreamLayer.Search(pSpFilter, True)
 Set pStream = pStreamCur.NextFeature
 Do While Not pStream Is Nothing
 pStreamFeatSel.Add pStream
 'split road at intersection point
 Set pRoad.Shape = SplitRoadAtPoint(pStream.Shape, pRoad.Shape)
 Set pStream = pStreamCur.NextFeature
 Loop

197

 'build new features for all segments in the split
 SplitRoadWithStream pStreamFeatSel, pRoad, lMaxId, lMaxPointId,
lIdx, lTpx, lFpx
 'delete original segment
 pRoad.Delete
 pStreamFeatSel.Clear
 Set pRoad = pRoadCur.NextFeature
 Loop

 SetStreamCross = True
 Exit Function
ErrorHandler:
 SetStreamCross = False
 HandleError True, "SetStreamCross " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4

End Function
'make a new polyline made of segments resulting from intersecting with
stream
Private Function SplitRoadAtPoint(ByRef pStreamPoly As IPolyline, _
 ByRef pRoadPoly As IPolyline) As IPolyline
 On Error GoTo ErrorHandler

 Dim pTopoOp As ITopologicalOperator
 Dim pLeftPiece As IPolyline
 Dim pRightPiece As IPolyline
 Dim pNewPoly As IPolyline
 Set pNewPoly = New Polyline
 Dim pNPColl As IGeometryCollection
 Set pNPColl = pNewPoly
 Dim pPartColl As IGeometryCollection

 Dim pPolyColl As IGeometryCollection
 Set pPolyColl = New GeometryBag
 Util.BreakPolyIntoPolySegments pRoadPoly, pPolyColl
 Debug.Print "input segments : " & pPolyColl.GeometryCount
 Dim b As Boolean
 Dim i As Integer
 For i = 0 To pPolyColl.GeometryCount - 1
 Set pTopoOp = pPolyColl.Geometry(i)
 b = pTopoOp.IsSimple
 pTopoOp.Cut pStreamPoly, pLeftPiece, pRightPiece
 If Not pLeftPiece Is Nothing And Not pRightPiece Is Nothing Then
 If pLeftPiece.Length > 0 And pRightPiece.Length > 0 Then
 Set pPartColl = pLeftPiece
 Debug.Print "left part segments : " & pPartColl.GeometryCount
 pNPColl.AddGeometryCollection pPartColl
 Set pPartColl = pRightPiece
 Debug.Print "right part segments : " & pPartColl.GeometryCount
 pNPColl.AddGeometryCollection pPartColl
 Else
 Set pPartColl = pPolyColl.Geometry(i)
 pNPColl.AddGeometryCollection pPartColl
 End If
 Else
 Set pPartColl = pPolyColl.Geometry(i)
 pNPColl.AddGeometryCollection pPartColl

198

 End If
 Next i
 Set SplitRoadAtPoint = pNewPoly
 Debug.Print "geomcount is :" & pNPColl.GeometryCount

 Set pTopoOp = Nothing
 Set pLeftPiece = Nothing
 Set pRightPiece = Nothing
 Set pNewPoly = Nothing
 Set pNPColl = Nothing
 Set pNPColl = Nothing
 Set pPartColl = Nothing
 Set pPolyColl = Nothing

 Exit Function
ErrorHandler:
 HandleError False, "SplitRoadAtPoint " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function

Private Sub SplitRoadWithStream(ByRef pStreamSel As IFeatureSelection,
ByRef pRoad As IFeature, _
 ByRef lMaxId As Long, ByRef lMaxPointId
As Long, _
 lIdx As Long, lTpx As Long, lFpx As
Long)
 On Error GoTo ErrorHandler

 'prepare selection to hold polylines
 Dim pRoadSel As IFeatureSelection
 Set pRoadSel = m_pRoadLayer
 pRoadSel.Clear
 'get segments in Road and make them polylines
 Dim pGeomColl As IGeometryCollection
 Set pGeomColl = New GeometryBag
 Util.BreakPolyIntoPolySegments pRoad.Shape, pGeomColl

 Dim pFeatClass As IFeatureClass
 Set pFeatClass = m_pRoadLayer.FeatureClass

 Dim i As Long
 For i = 0 To pGeomColl.GeometryCount - 1
 Dim pFeat As IFeature
 Set pFeat = pFeatClass.CreateFeature
 ' MsgBox "created feat " & pFeat.OID
 Util.CopyAllAtributes pRoad, pFeat
 ' MsgBox "copied attrib from " & pRoad.OID & " to " & pFeat.OID
 Set pFeat.Shape = pGeomColl.Geometry(i)
 lMaxId = lMaxId + 1
 pFeat.Value(lIdx) = lMaxId
 pFeat.Store
 ' MsgBox "updated shape and id for " & pFeat.OID
 'add feat to collection
 pRoadSel.Add pFeat
 m_pRefresh.Add pFeat
 ' MsgBox "refreshed"
 Next i

199

 'insert an artificial break in the road table either at frompt or topt
 MakeFakeBreak pRoadSel, pStreamSel, lMaxPointId, lFpx, lTpx, True
 ' MsgBox "made fake break"
 'relese memory
 Set pGeomColl = Nothing

 Exit Sub
ErrorHandler:
 HandleError True, "SplitRoadWithStream " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub
Private Function MakeFakeBreak(ByRef pRoadSel As IFeatureSelection,
ByRef pStreamSel As IFeatureSelection, _
 ByRef lMaxPointId As Long, lFpx As Long, lTpx
As Long, flag As Boolean) As Boolean
 On Error GoTo ErrorHandler

 Dim success As Boolean
 success = False
 Dim pStreamSet As ISelectionSet
 Set pStreamSet = pStreamSel.SelectionSet
 Dim pStreamCur As IFeatureCursor
 'select all streams in given set
 pStreamSet.Search Nothing, False, pStreamCur
 Dim pStream As IFeature
 Set pStream = pStreamCur.NextFeature
 Dim pSpFilter As ISpatialFilter
 Set pSpFilter = New SpatialFilter
 pSpFilter.SpatialRel = esriSpatialRelTouches

 Dim pRoadSet As ISelectionSet
 Set pRoadSet = pRoadSel.SelectionSet
 Dim pRoadCur As IFeatureCursor
 Dim pRoad As IFeature

 Dim pRoadPoly As IPolyline
 Dim pEndPoint As IPoint
 Dim pStreamPoly As IPolyline
 Dim pRelOp As IRelationalOperator

 Do While Not pStream Is Nothing
 Set pStreamPoly = pStream.Shape
 'get the road segments from the roadset touching pStream
 Set pSpFilter.Geometry = pStreamPoly
 pRoadSet.Search pSpFilter, False, pRoadCur

 Set pRoad = pRoadCur.NextFeature
 Do While Not pRoad Is Nothing
 'identify end that touches
 Set pRoadPoly = pRoad.Shape
 'try from end first
 Set pEndPoint = pRoadPoly.FromPoint
 Set pRelOp = pEndPoint
 If pRelOp.Within(pStreamPoly) Then
 pRoad.Value(lFpx) = lMaxPointId + 1 ' set flow "FROM" to this
point
 pRoad.Store

200

 lMaxPointId = lMaxPointId + 1
 End If
 'try the "to" end
 Set pEndPoint = pRoadPoly.ToPoint
 Set pRelOp = pEndPoint
 If pRelOp.Within(pStreamPoly) Then
 pRoad.Value(lTpx) = lMaxPointId + 1 ' set flow "TO" to this
point
 pRoad.Store
 lMaxPointId = lMaxPointId + 1
 End If
 'iterate
 Set pRoad = pRoadCur.NextFeature
 Loop
 'iterate streams
 Set pStream = pStreamCur.NextFeature
 Loop

 'release memory
 Set pStreamSet = Nothing
 Set pStream = Nothing
 Set pRoadSet = Nothing
 Set pSpFilter = Nothing
 Set pRoad = Nothing
 Set pStreamCur = Nothing
 Set pRoadCur = Nothing
 Set pRelOp = Nothing
 Set pEndPoint = Nothing

 success = True
 'returns true if all break have been written
 MakeFakeBreak = success

 Exit Function
ErrorHandler:
 HandleError True, "MakeFakeBreak " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function

Private Sub m_pFrm_HasFinished(bCancel As Boolean)
 On Error GoTo ErrorHandler

 'for all user choices go through their unwanted children and cut them
off
 'artificial break point at their FROMPT
 If Not bCancel Then
 'find indexes
 Dim lIdx As Long, lFpx As Long, lTpx As Long
 lIdx = m_lRoadFieldInd(0)
 lFpx = m_lRoadFieldInd(3)
 lTpx = m_lRoadFieldInd(4)
 'find max value from fields
 Dim lMaxPointValue As Long
 lMaxPointValue = Util.GetMaxOfFields(m_pRoadLayer.FeatureClass,
lFpx, lTpx)

 'm_pWKSEdit.StartEditing False

201

 Dim pFeatCur As IFeatureCursor
 Dim pFeat As IFeature
 Dim pFilter As IQueryFilter
 Set pFilter = New QueryFilter

 Dim counter As Integer
 Dim colChildren As Collection
 For Each colChildren In m_colUserDec
 MsgBox colChildren.count - 1 'verification ###### take out
 For counter = 2 To colChildren.count
 'find feature
 pFilter.WhereClause = "RSAID = " & colChildren.Item(counter)
 Set pFeatCur = m_pRoadLayer.Search(pFilter, False)
 Set pFeat = pFeatCur.NextFeature
 If Not pFeat Is Nothing Then
 'modify "from point" value
 lMaxPointValue = lMaxPointValue + 1
 pFeat.Value(lFpx) = lMaxPointValue
 pFeat.Store
 End If
 Next counter
 Next

 'm_pWKSEdit.StopEditing True

 'continue set up
 Dim success As Boolean
 success = SetNetworkTopology

 'display message
 DisplayErrorReport success
 Else
 'user has canceled the dialog
 'do not save edits
 m_pWksEdit.StopEditing False
 m_pDoc.ActiveView.PartialRefresh esriViewGeography +
esriViewGraphics, Nothing, Nothing
 End If

 'release memory
 Set pFilter = Nothing
 Set colChildren = Nothing
 Exit Sub
ErrorHandler:
 'this is needed to stop editing wks if anything went wrong
 m_pWksEdit.StopEditing False
 HandleError True, "m_pr_HasFinished " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4

End Sub

'go through each segment in the road layer and see if any segment has
'it's end point as start point for more than one other segment
'if yes add the segment to a collection and have user decide

Private Function CheckDownStreamConnect() As Boolean
 On Error GoTo ErrorHandler

202

 'find indexes
 Dim lIdx As Long, lFpx As Long, lTpx As Long
 lIdx = m_lRoadFieldInd(0)
 lFpx = m_lRoadFieldInd(3)
 lTpx = m_lRoadFieldInd(4)
 Dim colChildren As Collection
 Set m_colUserDec = New Collection

 'select all roads
 Dim pWks As IWorkspace
 Set pWks = m_pWksEdit
 Dim lCurTP As Long
 Dim pFilter As IQueryFilter
 Set pFilter = New QueryFilter
 Dim pSelection As ISelectionSet
 Dim pFeatCur As IFeatureCursor
 Set pFeatCur = m_pRoadLayer.Search(Nothing, False)
 Dim pChildrenCur As IFeatureCursor
 Dim pChild As IFeature

 'loop through all
 Dim pFeat As IFeature
 Set pFeat = pFeatCur.NextFeature
 Do While Not pFeat Is Nothing
 'get end pt
 lCurTP = pFeat.Value(lTpx)
 'select all features that have from point equal to lCurEndPt
 pFilter.WhereClause = "FROMPT = " & lCurTP
 Set pSelection = m_pRoadLayer.FeatureClass.Select(pFilter,
esriSelectionTypeIDSet, _

esriSelectionOptionNormal, pWks)
 If pSelection.count > 1 Then
 'add the features rsaid as first element in children's collection
 Set colChildren = New Collection
 colChildren.Add pFeat.Value(lIdx)
 'add the children starting with element 2 of the children
collection
 pSelection.Search Nothing, False, pChildrenCur
 Set pChild = pChildrenCur.NextFeature
 Do While Not pChild Is Nothing
 colChildren.Add pChild.Value(lIdx)
 'move to next
 Set pChild = pChildrenCur.NextFeature
 Loop
 'add the children collection to user decision collection
 m_colUserDec.Add colChildren
 Set colChildren = Nothing
 End If

 'move to next
 Set pFeat = pFeatCur.NextFeature
 Loop

 If m_colUserDec.count > 0 Then
 Set m_pFrm = New frmChildDec
 Dim pMap As IMap
 Set pMap = m_pDoc.FocusMap

203

 m_pFrm.SetUpDialog m_colUserDec, m_pRoadLayer, pMap
 m_pFrm.Show vbModeless
 CheckDownStreamConnect = False
 Exit Function
 End If

 CheckDownStreamConnect = True

 Exit Function
ErrorHandler:
 HandleError False, "CheckDownStreamConnect " & c_ModuleFileName & " "
& GetErrorLineNumberString(Erl), Err.Number, Err.Source,
Err.Description, 4
End Function

Private Function SetNetworkTopology() As Boolean
 On Error GoTo ErrorHandler

 Dim success As Boolean
 '6
 'm_pWKSEdit.StartEditing False
 success = SetAllParents()
 m_pRefresh.Invalidate esriAllScreenCaches
 MsgBox "Set Parents " & success
 'm_pWKSEdit.StopEditing True

 '7
 'm_pWKSEdit.StartEditing False
 success = SetCulverts()
 MsgBox "set all culverts " & success

 '8
 success = EvaluateCulvertCode()
 MsgBox "evaluated culvert removal options"

 m_pRefresh.Invalidate esriAllScreenCaches
 m_pWksEdit.StopEditing True

 'release buttons
 m_pExtension.HasTopology = True

 SetNetworkTopology = True

 Exit Function
ErrorHandler:
 m_pWksEdit.StopEditing False
 SetNetworkTopology = False
 HandleError True, "SetNetworkTopology " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function
Private Function SplitRoadsAtExistingCulverts() As Long()
 On Error GoTo ErrorHandler

 ReDim ErrorLog(0) As Long
 Dim count As Integer
 count = 0
 Dim removeCode As Integer

204

 'get remove code field index from culvert layer
 Dim rmcdIDx As Long
 rmcdIDx = m_lCulFieldInd(1)

 'MsgBox "debug 1"

 'create snap agent into the roads layer
 Dim pRoadSnapper As ISnapAgent
 Set pRoadSnapper =
Util.CreateBoundarySnapAgent(m_pRoadLayer.FeatureClass)

 'MsgBox "debug 2"

 'select all culverts from the culvert layer
 Dim pCulvCursor As IFeatureCursor
 Set pCulvCursor = m_pCulvertLayer.Search(Nothing, False)
 Dim pExistingCulvert As IFeature
 Set pExistingCulvert = pCulvCursor.NextFeature
 Do While Not pExistingCulvert Is Nothing
 'MsgBox "examining culvert: " & pExistingCulvert.OID
 'go through all culverts modifying road geometries and topological
attributes
 removeCode = InsertExistingCulvertLocation(pExistingCulvert,
m_pRoadLayer.FeatureClass, _
 pRoadSnapper, 100, m_lRoadFieldInd)

 'MsgBox "debug 3 -- culvert id: " & pExistingCulvert.OID
 If removeCode > 0 Then
 'set the remove code value into the culvert layer
 'it will be reevaluated in the end
 pExistingCulvert.Value(rmcdIDx) = removeCode
 pExistingCulvert.Store
 Else
 ReDim Preserve ErrorLog(count)
 ErrorLog(count) = pExistingCulvert.OID
 count = count + 1
 End If
 'loop refresh
 Set pExistingCulvert = pCulvCursor.NextFeature
 Loop

 'MsgBox "debug 4"

 'signal that all culverts have been successfuly added
 If count = 0 Then
 ErrorLog(0) = -1
 End If
 SplitRoadsAtExistingCulverts = ErrorLog

 Exit Function
ErrorHandler:
 HandleError False, "SplitRoadsAtExistingCulverts " & c_ModuleFileName
& " " & GetErrorLineNumberString(Erl), Err.Number, Err.Source,
Err.Description, 4
End Function

'Add one culvert to the network and maintain the topology
'return a code indicating if culvert has split a segment or not
Private Function InsertExistingCulvertLocation(pPointFeat As IFeature, _

205

 pLineFeatClass As IFeatureClass, _
 pSnapAgent As ISnapAgent, _
 tolerance As Double, _
 RSAFieldInd() As Long) As Integer
 On Error GoTo ErrorHandler

 Dim removeCode As Integer
 removeCode = 0

 'MsgBox "insert culvert debug 1"

 '1 Snap point (culvert) to line (road)
 Util.MovePointFeatToSnapLocation pPointFeat, pSnapAgent, tolerance

 'MsgBox "insert culvert debug 2"

 '3 Break line (road) in two segments at point location (culvert)
 Dim pLineFeature As IFeature
 Set pLineFeature = Util.FindFeatureXPoint(pLineFeatClass,
pPointFeat.Shape)
 If pLineFeature Is Nothing Then Exit Function
 Dim pSegments(2) As IPolyline
 Util.CutPolylineAtPoint pLineFeature.Shape, pPointFeat.Shape,
pSegments

 'MsgBox "insert culvert debug 3"

 '4 Create new features and copy all non topological attributes
 Dim pNewFeat As IFeature
 If (Not pSegments(0) Is Nothing) And (Not pSegments(1) Is Nothing)
Then
 If pSegments(1).Length > 0 And pSegments(0).Length > 0 Then
 Set pNewFeat = pLineFeatClass.CreateFeature
 Util.CopyAllAtributes pLineFeature, pNewFeat
 Set pLineFeature.Shape = pSegments(0) 'upper segment
 Set pNewFeat.Shape = pSegments(1) 'lower segment
 Else
 'CANNOT ADD CULVERT IN INTERSECTION - removing culvert could not
be done without
 'user query in order to rebuild parent-child topology
 'check how many segments this point intersects
 'if more than 2 bail
 Dim pFeatures() As IFeature
 pFeatures =
Util.FindAllFeaturesNearPoint(m_pRoadLayer.FeatureClass, _
 pPointFeat.Shape, tolerance)
 If UBound(pFeatures) > 1 Then Exit Function
 End If
 Else
 Exit Function
 End If

 'MsgBox "insert culvert debug 4"

 If Not pNewFeat Is Nothing Then
 '5 Give unique identifiers to new road segments
 Dim maxId As Long
 maxId = Util.GetMaxValue(pLineFeatClass, RSAFieldInd(0))
 If maxId < 0 Then maxId = 0

206

 pNewFeat.Value(RSAFieldInd(0)) = maxId + 1
 'signal that the road has sucessfully been split __VERY IMPORTANT__
 removeCode = 1

 'MsgBox "insert culvert debug 5"

 '6 Maintain node topology -- INSERT NODE
 Dim maxPointId As Long
 maxPointId = Util.GetMaxOfFields(pLineFeatClass, RSAFieldInd(3),
RSAFieldInd(4))
 'make parent segment flow to a new node
 pLineFeature.Value(RSAFieldInd(4)) = maxPointId + 1
 'make child flow from the same new node
 pNewFeat.Value(RSAFieldInd(3)) = maxPointId + 1

 'MsgBox "insert culvert debug 6"

 '7 Signal that these features have no parents or child respectively.
 ' This will allow us to keep the node topology intact (see
SetParents)
 ' in order to be able to rebuild the network at removal time.
 pNewFeat.Value(m_lRoadFieldInd(5)) = -1 'Par1
 pNewFeat.Value(m_lRoadFieldInd(6)) = -1 'Par2
 pNewFeat.Value(m_lRoadFieldInd(7)) = -1 'Par3

 'MsgBox "insert culvert debug 7"

 pNewFeat.Store
 Else
 'signal that the culvert has been added to the end of a road segment
__VERY IMPORTANT__
 removeCode = 2
 End If

 'MsgBox "insert culvert debug 8"

 'signal that original feature has no child (see 7)
 pLineFeature.Value(m_lRoadFieldInd(8)) = -1 'Child
 pLineFeature.Store

 InsertExistingCulvertLocation = removeCode

 Exit Function
ErrorHandler:
 HandleError False, "InsertExistingCulvertLocation " & c_ModuleFileName
& " " & GetErrorLineNumberString(Erl), Err.Number, Err.Source,
Err.Description, 4
End Function
'give each culvert an approriate remove code in order to avoid
'abnormalities when user remove culverts later on
Private Function EvaluateCulvertCode() As Boolean
 'the following codes are used:
 '0 - cannot be removed -- stream crossing, road termination
 '1 - general case -- located along a uniform road stretch, segments
will merge at removal
 '2 - end culvert -- located at the edge of a uniform section, no
merge at removal
 Dim lRemIdx As Long, lDelPotIdx As Long
 lRemIdx = m_lCulFieldInd(1)

207

 lDelPotIdx = m_lCulFieldInd(2)
 Dim pFeat As IFeature
 Dim pPolyline As IPolyline
 Dim pFeatures() As IFeature
 Dim unremovable As Boolean
 Dim deliverAll As Boolean
 deliverAll = False
 unremovable = False
 Dim i As Integer
 Dim touchCount As Integer
 touchCount = 0

 'select all culverts
' Dim pFilter As IQueryFilter
' Set pFilter = New QueryFilter
' pFilter.WhereClause = "REMCD > 0"
 Dim pCulvCursor As IFeatureCursor
 Set pCulvCursor = m_pCulvertLayer.Search(Nothing, False)

 'Loop through all culverts
 Dim pCurCulv As IFeature
 Set pCurCulv = pCulvCursor.NextFeature
 Do While Not pCurCulv Is Nothing
 'examine if the culvert is on a stream
 Set pFeat = Util.FindFeatureNearPoint(m_pStreamLayer.FeatureClass, _
 pCurCulv.Shape, 0.000000001)
 If Not pFeat Is Nothing Then
 'is on a stream
 unremovable = True
 deliverAll = True
 Else
 'culvert is not on a stream
 'examine if the culvert is at the end of one or more segments
 pFeatures =
Util.FindAllFeaturesNearPoint(m_pRoadLayer.FeatureClass, _
 pCurCulv.Shape, 0.000000001)
 'count the number of features touching the culvert
 'which flow to this culvert
 For i = 0 To UBound(pFeatures)
 Set pFeat = pFeatures(i)
 If Not pFeat Is Nothing Then
 Set pPolyline = pFeat.Shape
 If Util.ComparePointLocations(pPolyline.ToPoint,
pCurCulv.Shape) Then
 'point is at the TOPT; count this feature
 touchCount = touchCount + 1
 End If
 End If
 Next i

 If (touchCount = 1 And UBound(pFeatures) = 0) Or touchCount > 1
Then
 unremovable = True
 End If
 End If

 If unremovable Then
 'prohibit removing culvert if it is on a stream
 'or on a terminal segment

208

 pCurCulv.Value(lRemIdx) = 0
 End If
 If deliverAll Then
 'force the probability of delivery to 1
 'this is to avoid raster inconsistencies when analyzing
 pCurCulv.Value(lDelPotIdx) = 1
 End If

 pCurCulv.Store

 'iterate
 unremovable = False
 deliverAll = False
 touchCount = 0
 Set pFeat = Nothing
 Set pCurCulv = pCulvCursor.NextFeature
 Loop

End Function

Private Sub DisplayErrorReport(success As Boolean)
 If success Then
 Dim response As String
 response = "Network Setup Completed Sucessfuly."
 If m_ErLog(0) > -1 Then
 response = response & vbLf & "The following existing culverts
could not be added"
 Dim i As Integer
 For i = LBound(m_ErLog) To UBound(m_ErLog)
 response = response & m_ErLog(i) & vbLf
 Next i
 response = response & "Try adding them manually at analysis time"
 End If
 MsgBox response
 Else
 MsgBox "Network Setup Completed Unsuccessfuly!", vbCritical
 End If
End Sub

CLASS – clsSetUpRoad (clsSetUpRoad.cls)

Option Explicit

Implements ICommand

Private m_pApp As IApplication
Private m_pExt As clsExt
Private Const ZFNAME As String = "ZFROM"
Private Const ZTNAME As String = "ZTO"
' Variables used by the Error handler function - DO NOT REMOVE
Const c_ModuleFileName =
"C:\Evenflo\ThesisWorks\VBScripts\CrossDrainSpacer\clsSetUpRoad.cls"

209

Private Sub Class_Terminate()
 On Error GoTo ErrorHandler

17: Set m_pApp = Nothing
18: Set m_pExt = Nothing

 Exit Sub
ErrorHandler:
 HandleError True, "Class_Terminate " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 On Error GoTo ErrorHandler

 'no bitmap needed

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Bitmap " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Caption() As String
 On Error GoTo ErrorHandler

40: ICommand_Caption = "Road SetUp"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Caption " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Category() As String
 On Error GoTo ErrorHandler

51: ICommand_Category = "Road Sediment Analyst"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Category " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Checked() As Boolean
 On Error GoTo ErrorHandler

 'TODO: your implementation here

210

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Checked " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Enabled() As Boolean
 On Error GoTo ErrorHandler

73: If Not m_pExt Is Nothing Then
74: If m_pExt.IsStarted And Not m_pExt.IsSetUp Then
75: ICommand_Enabled = True
76: Else: ICommand_Enabled = False
77: End If
78: Else: ICommand_Enabled = False
79: End If

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Enabled " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_HelpContextID() As Long
 On Error GoTo ErrorHandler

 'TODO: your implementation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_HelpContextID " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_HelpFile() As String
 On Error GoTo ErrorHandler

 'TODO: your implementation here

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_HelpFile " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Message() As String
 On Error GoTo ErrorHandler

112: ICommand_Message = "Set Up The Required Road/Ditch Structure"

 Exit Property

211

ErrorHandler:
 HandleError True, "ICommand_Message " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Property Get ICommand_Name() As String
 On Error GoTo ErrorHandler

123: ICommand_Name = "SetUp"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Name " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Sub ICommand_OnClick()
 On Error GoTo ErrorHandler

 'check exension
136: If m_pExt Is Nothing Then
137: MsgBox "invalid RSA extension"
 Exit Sub
139: End If
 'get layer
 Dim pRoadLayer As IFeatureLayer
142: Set pRoadLayer = m_pExt.RoadLayer
 'get dem
 Dim pDemLayer As IRasterLayer
145: Set pDemLayer = m_pExt.DemLayer
 'check editing state
 Dim pWksEdit As IWorkspaceEdit
 Dim pDS As IDataset
149: Set pDS = pRoadLayer
150: Set pWksEdit = pDS.Workspace
151: If pWksEdit.IsBeingEdited Then
152: MsgBox "The workspace: " & pDS.Workspace.PathName & vbLf & _
 "is currently being edited. Stop editing first"
 Exit Sub
155: End If
 'get grade name from user
 Dim pFrm As frmGradeName
158: Set pFrm = New frmGradeName
159: pFrm.RSAExtension = m_pExt
160: pFrm.Show vbModal
 Dim ok As Boolean, bOverride As Boolean
162: ok = pFrm.CompletedOK
163: bOverride = pFrm.OverrideValues
164: Set pFrm = Nothing
 If Not ok Then Exit Sub
 'create fields
 If Not CreateZFields(pRoadLayer.FeatureClass) Then Exit Sub
 'set cursor to busy
 Dim pMouseCur As IMouseCursor
170: Set pMouseCur = New MouseCursor

212

171: pMouseCur.SetCursor 2
 'start editing
173: pWksEdit.StartEditing False
 'enforce simple paths
175: EnforceFnct.SimplifyPaths pRoadLayer.FeatureClass
 'enforce end connectivity only, no midway intersections
177: EnforceFnct.ForceEndConnectivity pRoadLayer.FeatureClass
 'sample z values from DEM
179: GetEndPointsElevation pRoadLayer, pDemLayer
 'set flow directionality
181: SetFlowAlongSegments pRoadLayer
 'compute grade
183: If bOverride Then EstimateGrade pRoadLayer.FeatureClass
 'save changes
185: pWksEdit.StopEditing True
 'reset cursor
187: pMouseCur.SetCursor 0
 'display layer with arrows
189: DisplayWithArrows pRoadLayer
 'refresh
 Dim pDoc As IMxDocument
192: Set pDoc = m_pApp.Document
193: pDoc.ActiveView.PartialRefresh esriViewGeography +
esriViewGraphics, pRoadLayer, Nothing
 'signal success and turn on buttons
195: m_pExt.IsSetUp = True
 'release memory
197: Set pDoc = Nothing
198: Set pMouseCur = Nothing
199: Set pWksEdit = Nothing
200: Set pRoadLayer = Nothing
201: Set pDemLayer = Nothing

 Exit Sub
ErrorHandler:
 HandleError True, "ICommand_OnClick " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)
 On Error GoTo ErrorHandler

212: Set m_pApp = hook
 Dim pId As New UID
214: pId.Value = "RoadSedimentAnalyst.clsExt"
215: Set m_pExt = m_pApp.FindExtensionByCLSID(pId)

 Exit Sub
ErrorHandler:
 HandleError True, "ICommand_OnCreate " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Property Get ICommand_Tooltip() As String
 On Error GoTo ErrorHandler

213

226: ICommand_Tooltip = "Set Up The Required Ditch Structure"

 Exit Property
ErrorHandler:
 HandleError True, "ICommand_Tooltip " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Property

Private Sub DisplayWithArrows(pLayer As ILayer)
 On Error GoTo ErrorHandler

 Dim pGFLayer As IGeoFeatureLayer
 Dim pSimpleRenderer As ISimpleRenderer
 Dim pNewSymbol As ILineSymbol
 Dim pColor As IColor
 ' Check if the layer is a feature layer
 If Not TypeOf pLayer Is IGeoFeatureLayer Then Exit Sub
244: Set pGFLayer = pLayer
 ' Check if there is a simple renderer and get a reference to it
 If Not TypeOf pGFLayer.Renderer Is ISimpleRenderer Then Exit Sub
247: Set pSimpleRenderer = pGFLayer.Renderer
248: Set pNewSymbol = pSimpleRenderer.Symbol
 'get initial color
250: Set pColor = pNewSymbol.Color
 'create new line symbol
252: Set pNewSymbol = New CartographicLineSymbol
253: pNewSymbol.Color = pColor
254: pNewSymbol.Width = 1
 'create arrow
 Dim pLineProps As ILineProperties
257: Set pLineProps = pNewSymbol
 Dim pLinedec As ILineDecoration
259: Set pLinedec = New LineDecoration
 Dim pLDE As ISimpleLineDecorationElement
261: Set pLDE = New SimpleLineDecorationElement
 Dim pArrow As IArrowMarkerSymbol
263: Set pArrow = New ArrowMarkerSymbol
264: With pArrow
265: .Color = pColor
266: .Size = 7
 '.Width = 6
268: End With
 'add arrow to line
270: pLDE.MarkerSymbol = pArrow
271: pLDE.AddPosition 1
272: pLinedec.AddElement pLDE
273: Set pLineProps.LineDecoration = pLinedec
 'add new symbol to rendered
275: Set pSimpleRenderer.Symbol = pNewSymbol

 Exit Sub
ErrorHandler:

214

 HandleError False, "DisplayWithArrows " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Sub

Private Function CreateZFields(pRoadClass As IFeatureClass) As Boolean
 On Error GoTo ErrorHandler

 Dim pField As IField
 Dim pFieldEdit As IFieldEdit

291: Set pField = New Field
292: Set pFieldEdit = pField

294: With pFieldEdit
 'fields of type double
296: .Name = ZFNAME
297: .Type = esriFieldTypeDouble
298: Util.AddNonExistingField pField, pRoadClass

300: .Name = ZTNAME
301: Util.AddNonExistingField pField, pRoadClass
302: End With

304: CreateZFields = True

306: Set pField = Nothing
307: Set pFieldEdit = Nothing

 Exit Function
ErrorHandler:
312: CreateZFields = False
 HandleError False, "CreateZFields " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function
'has to run inside an edit session.
Private Function GetEndPointsElevation(pRoadLayer As IFeatureLayer,
pDemLayer As IRasterLayer) As Boolean
 On Error GoTo ErrorHandler

 '*** get vector stuff

 'Get road selection
 Dim pSelectionSet As ISelectionSet
 Dim pRoadSelection As IFeatureSelection
324: Set pRoadSelection = pRoadLayer
 Dim pRoadCursor As IFeatureCursor

 'MsgBox "check 1"

329: Set pSelectionSet = pRoadSelection.SelectionSet
 'if no selection select all
331: If pSelectionSet.count = 0 Then
332: Set pRoadCursor = pRoadLayer.Search(Nothing, False)
333: Else

215

334: pSelectionSet.Search Nothing, False, pRoadCursor
335: End If

 'MsgBox "check 2"

 Dim pRoad As IFeature
 Dim pPolyline As IPolyline
341: Set pRoad = pRoadCursor.NextFeature

 'get required field indexes
 Dim lZFIndex As Long, lZTIndex As Long
345: lZFIndex = pRoadLayer.FeatureClass.FindField(ZFNAME)
346: lZTIndex = pRoadLayer.FeatureClass.FindField(ZTNAME)

 'MsgBox "check 3"

 '** Loop and get values

 Dim sValue As String
352: Do While Not pRoad Is Nothing
353: Set pPolyline = pRoad.Shape
 'get value of the from point
355: sValue = Util.GetCellValue(pDemLayer, pPolyline.FromPoint)
356: If StrComp(sValue, "NoData", vbTextCompare) <> 0 Then
357: pRoad.Value(lZFIndex) = CDbl(sValue)
358: End If
 'get value of the to point
360: sValue = Util.GetCellValue(pDemLayer, pPolyline.ToPoint)
361: If StrComp(sValue, "NoData", vbTextCompare) <> 0 Then
362: pRoad.Value(lZTIndex) = CDbl(sValue)
363: End If
364: pRoad.Store
 'increase count
366: Set pRoad = pRoadCursor.NextFeature
367: Loop

 'MsgBox "check 4"
370: GetEndPointsElevation = True

 Exit Function
ErrorHandler:
375: GetEndPointsElevation = False
 HandleError False, "GetEndPointsElevation " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function
'has to run inside edit session
Private Function SetFlowAlongSegments(pRoadLayer As IFeatureLayer) As
Boolean
 On Error GoTo ErrorHandler

 Dim pRoadSeg As IFeature

 'select all features in pRoadLayer
 Dim pFeatCur As IFeatureCursor
388: Set pFeatCur = pRoadLayer.Search(Nothing, False)
389: Set pRoadSeg = pFeatCur.NextFeature
 'get required field indexes

216

 Dim lZFIdx As Long, lZTIdx As Long
392: lZFIdx = pRoadLayer.FeatureClass.FindField(ZFNAME)
393: lZTIdx = pRoadLayer.FeatureClass.FindField(ZTNAME)

 'go through each segment, verify flow and change if necessary
 Dim dZFrom As Double, dZTo As Double
 Dim pPolyline As IPolyline
398: Do While Not pRoadSeg Is Nothing
399: dZFrom = pRoadSeg.Value(lZFIdx)
400: dZTo = pRoadSeg.Value(lZTIdx)
401: If (dZFrom < dZTo) Then
402: Set pPolyline = pRoadSeg.Shape
403: pPolyline.ReverseOrientation
404: Set pRoadSeg.Shape = pPolyline
405: Debug.Print "flipped " & pRoadSeg.OID
 'swap values in table
407: pRoadSeg.Value(lZFIdx) = dZTo
408: pRoadSeg.Value(lZTIdx) = dZFrom

410: pRoadSeg.Store

412: End If

414: Set pRoadSeg = pFeatCur.NextFeature
415: Loop

417: SetFlowAlongSegments = True

 Exit Function
ErrorHandler:
422: SetFlowAlongSegments = False
 HandleError False, "SetFlowAlongSegments " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function
'run inside edit session
Private Function EstimateGrade(pFClass As IFeatureClass) As Boolean
 On Error GoTo ErrorHandler

 Dim grade As Integer
 Dim d As Double, L As Double, h As Double
 'get field indexes
 Dim lZFi As Long, lZTi As Long, lGi As Long
434: lZFi = pFClass.FindField(ZFNAME)
435: lZTi = pFClass.FindField(ZTNAME)
436: lGi = pFClass.FindField(m_pExt.GradeName)
 'loop
 Dim pCursor As IFeatureCursor
439: Set pCursor = pFClass.Search(Nothing, False)
 Dim pFeat As IFeature
441: Set pFeat = pCursor.NextFeature
 Dim pPolyline As IPolyline
443: Do While Not pFeat Is Nothing
444: Set pPolyline = pFeat.Shape
445: L = pPolyline.Length
446: h = Math.Abs(pFeat.Value(lZFi) - pFeat.Value(lZTi))
447: d = Math.Sqr(Math.Abs(L * L - h * h))

217

448: grade = CInt(h * 100 / d)
449: pFeat.Value(lGi) = grade
450: pFeat.Store
451: Set pFeat = pCursor.NextFeature
452: Loop

 'relese memory
455: Set pCursor = Nothing
456: Set pFeat = Nothing
457: Set pPolyline = Nothing

 Exit Function
ErrorHandler:
 HandleError False, "EstimateGrade " & c_ModuleFileName & " " &
GetErrorLineNumberString(Erl), Err.Number, Err.Source, Err.Description,
4
End Function

CLASS – clsSplit (clsSplit.cls)

Option Explicit

Implements ICommand
Implements ITool

Private m_pApp As IApplication
Private m_pBitmap As IPictureDisp
Private m_pMouseCur As IPictureDisp
Private m_pExt As clsExt
Private m_pFeatClass As IFeatureClass
Private m_pWksEdit As IWorkspaceEdit
Private m_pRefresh As IInvalidArea

Private m_pDisplay As IDisplay
Private m_pSymbol As ISymbol
Private m_pNewPoint As IPoint
Private m_pSnapAgent As IFeatureSnapAgent

Private Sub Class_Initialize()
 'load the button image from the resource file
 Set m_pBitmap = LoadResPicture("Split", vbResBitmap)
 Set m_pMouseCur = LoadResPicture("EditLine", vbResCursor)
End Sub

Private Sub Class_Terminate()
 Set m_pBitmap = Nothing
 Set m_pMouseCur = Nothing
 Set m_pExt = Nothing
 Set m_pApp = Nothing
End Sub

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 ICommand_Bitmap = m_pBitmap
End Property

218

Private Property Get ICommand_Caption() As String
 ICommand_Caption = "Split"
End Property

Private Property Get ICommand_Category() As String
 ICommand_Category = "Road Sediment Analyst"
End Property

Private Property Get ICommand_Checked() As Boolean
 'TODO: your implementation here
End Property

Private Property Get ICommand_Enabled() As Boolean
 'check for certain properties in extension
 If Not m_pExt Is Nothing Then
 If m_pExt.IsStarted And m_pExt.IsSetUp And Not m_pExt.HasTopology
Then
 ICommand_Enabled = True
 Else: ICommand_Enabled = False
 End If
 Else: ICommand_Enabled = False
 End If
End Property

Private Property Get ICommand_HelpContextID() As Long
 'TODO: your implementation here
End Property

Private Property Get ICommand_HelpFile() As String
 'TODO: your implementation here
End Property

Private Property Get ICommand_Message() As String
 ICommand_Message = "Split Segment At Point"
End Property

Private Property Get ICommand_Name() As String
 ICommand_Name = "Split"
End Property

Private Sub ICommand_OnClick()
 On Error GoTo erh
 Dim pMxDoc As IMxDocument
 Set pMxDoc = m_pApp.Document
 Set m_pDisplay = pMxDoc.ActiveView.ScreenDisplay
 Set m_pFeatClass = m_pExt.RoadLayer.FeatureClass
 'create new snap agent
 Set m_pSnapAgent = New FeatureSnap
 With m_pSnapAgent
 Set .FeatureClass = m_pFeatClass
 .HitType = esriGeometryPartBoundary
 End With
 'create new symbol
 Set m_pSymbol = New SimpleMarkerSymbol
 m_pSymbol.ROP2 = esriROPNotXOrPen
 Dim pMarkSym As IMarkerSymbol
 Set pMarkSym = m_pSymbol 'QI
 Dim myColor As IColor

219

 Set myColor = New RgbColor
 myColor.RGB = RGB(0, 0, 0)
 pMarkSym.Color = myColor
 pMarkSym.Size = 8
 'get the workspace to edit
 Dim pDS As IDataset
 Set pDS = m_pFeatClass
 Set m_pWksEdit = pDS.Workspace
 If Not m_pWksEdit.IsBeingEdited Then
 m_pWksEdit.StartEditing True
 End If
 'create new screen refresh
 Set m_pRefresh = New InvalidArea
 Set m_pRefresh.Display = m_pDisplay

 Exit Sub
erh:
 MsgBox "error in create flip cmd: " & Error
End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)
 Set m_pApp = hook
 Dim pId As New UID
 pId.Value = "RoadSedimentAnalyst.clsExt"
 Set m_pExt = m_pApp.FindExtensionByCLSID(pId)
End Sub

Private Property Get ICommand_Tooltip() As String
 ICommand_Tooltip = "Split Segment At Point"
End Property

Private Property Get ITool_Cursor() As esriCore.OLE_HANDLE
 ITool_Cursor = m_pMouseCur
End Property

Private Function ITool_Deactivate() As Boolean
 DrawSymbol m_pNewPoint
 Set m_pNewPoint = Nothing 'this will avoid marker leftovers
 Set m_pDisplay = Nothing
 Set m_pSymbol = Nothing

 If Not m_pWksEdit Is Nothing Then
 m_pWksEdit.StopEditing True
 End If
 Set m_pWksEdit = Nothing
 Set m_pRefresh = Nothing

 ITool_Deactivate = True
End Function

Private Function ITool_OnContextMenu(ByVal X As Long, ByVal Y As Long)
As Boolean
 'TODO: your implementation here
End Function

Private Sub ITool_OnDblClick()
 'unused
End Sub

220

Private Sub ITool_OnKeyDown(ByVal keyCode As Long, ByVal Shift As Long)
 'TODO: your implementation here
End Sub

Private Sub ITool_OnKeyUp(ByVal keyCode As Long, ByVal Shift As Long)
 'TODO: your implementation here
End Sub

Private Sub ITool_OnMouseDown(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 If Not m_pNewPoint Is Nothing Then
 Dim pFeat As IFeature
 Dim pNewFeat As IFeature
 Set pFeat = Util.FindFeatureXPoint(m_pFeatClass, m_pNewPoint)
 'get the feature intersected by the point
 If Not pFeat Is Nothing Then
 m_pWksEdit.StartEditOperation
 'split old geometry
 Dim pSegments(1) As IPolyline
 Util.CutPolylineAtPoint pFeat.Shape, m_pNewPoint, pSegments
 If (Not pSegments(0) Is Nothing) And (Not pSegments(1) Is Nothing)
Then
 'create new feature
 Set pNewFeat = m_pFeatClass.CreateFeature
 'copy attributes
 Util.CopyAllAtributes pFeat, pNewFeat
 'set geometries
 Set pFeat.Shape = pSegments(0)
 Set pNewFeat.Shape = pSegments(1)

 pFeat.Store
 pNewFeat.Store
 m_pRefresh.Add pFeat
 m_pRefresh.Add pNewFeat
 End If
 m_pWksEdit.StopEditOperation
 m_pRefresh.Invalidate esriAllScreenCaches
 End If
 End If
End Sub

Private Sub ITool_OnMouseMove(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 DrawSymbol m_pNewPoint
 Set m_pNewPoint = m_pDisplay.DisplayTransformation.ToMapPoint(X, Y)
 DrawSymbol m_pNewPoint
End Sub

Private Sub ITool_OnMouseUp(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 'not used
End Sub

Private Sub ITool_Refresh(ByVal hDC As esriCore.OLE_HANDLE)
 'avoid a marker left on the line
 Set m_pNewPoint = Nothing
End Sub

Sub DrawSymbol(pPoint)

221

 On Error GoTo erh
 If Not pPoint Is Nothing Then 'the point is initialy nothing
 m_pDisplay.StartDrawing m_pDisplay.hDC, esriNoScreenCache
 m_pSymbol.SetupDC m_pDisplay.hDC, m_pDisplay.DisplayTransformation
 m_pSnapAgent.Snap Nothing, pPoint, 100
 m_pSymbol.Draw pPoint
 m_pSymbol.ResetDC
 m_pDisplay.FinishDrawing
 End If
 Exit Sub
erh:
 MsgBox "error in draw symbol " & Error
End Sub

CLASS – clsStart (clsStart.cls)

Option Explicit

Implements ICommand
Private m_pApp As IApplication
Private m_pDoc As IMxDocument
Private m_pExtension As clsExt

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 'TODO: your implementation here
End Property

Private Property Get ICommand_Caption() As String
 ICommand_Caption = "Start"
End Property

Private Property Get ICommand_Category() As String
 ICommand_Category = "Road Sediment Analyst"
End Property

Private Property Get ICommand_Checked() As Boolean
 'TODO: your implementation here
End Property

Private Property Get ICommand_Enabled() As Boolean
 If Not m_pExtension Is Nothing Then
 If Not m_pExtension.IsStarted Then
 ICommand_Enabled = True
 Else: ICommand_Enabled = False
 End If
 Else: ICommand_Enabled = False
 End If
End Property

Private Property Get ICommand_HelpContextID() As Long
 'TODO: your implementation here
End Property

Private Property Get ICommand_HelpFile() As String
 'TODO: your implementation here
End Property

222

Private Property Get ICommand_Message() As String
 ICommand_Message = "Starts the Road Sediment Analyst"
End Property

Private Property Get ICommand_Name() As String
 ICommand_Name = "Start"
End Property

Private Sub ICommand_OnClick()
 'disable buttons
 m_pExtension.IsStarted = False
 m_pExtension.IsSetUp = False

 'Verify that sediment model exists
 Dim pSedModel As ISedimentModel
 Set pSedModel = m_pApp.FindExtensionByName(m_pExtension.SedModelName)
 If pSedModel Is Nothing Then
 MsgBox "No Sediment Model could be found!" & vbLf & "Please check
extesions."
 Exit Sub
 ElseIf TypeOf pSedModel Is IExtensionConfig Then
 Dim pExtConfig As IExtensionConfig
 Set pExtConfig = pSedModel
 If pExtConfig.State = esriESDisabled Then
 pExtConfig.State = esriESEnabled
 End If
 Set pExtConfig = Nothing
 End If

 'get the layers form user and set them up in the extension
 Dim pWorkSpace As IWorkspace
' Set pWorkSpace = pCulvLayer.FeatureClass.FeatureDataset.Workspace
 Dim pFrm As frmSetData
 Set pFrm = New frmSetData
 pFrm.AddLayers m_pDoc.FocusMap, Me
 pFrm.Show vbModal
 'after form has released the following will happen
 If pFrm.CompletedSuccessfuly = True Then
 'set extension started
 m_pExtension.IsStarted = True
 End If
 'destroy form reference
 Set pFrm = Nothing
End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)
 Set m_pApp = hook
 Set m_pDoc = m_pApp.Document
 Dim pId As New UID
 pId.Value = "RoadSedimentAnalyst.clsExt"
 Set m_pExtension = m_pApp.FindExtensionByCLSID(pId)
End Sub

Private Property Get ICommand_Tooltip() As String
 ICommand_Tooltip = "Starts the Road Sediment Analyst"
End Property
'variable iCopy can be 0 > no copies or 1 > make copies
Public Sub ReceiveLayers(sRLName As String, sSLName As String, sCLName
As String, _

223

 sDEMName As String, iCopy As Integer)
 If m_pExtension Is Nothing Then
 MsgBox "could not find the road analyst extension"
 Exit Sub
 End If

 'identify all datasets by name
 Dim pRoadLayer As IFeatureLayer
 Dim pStreamLayer As IFeatureLayer
 Dim pCulvertLayer As IFeatureLayer
 Dim pDemLayer As IRasterLayer

 Set pRoadLayer = GetLayer(sRLName)
 Set pStreamLayer = GetLayer(sSLName)
 Set pCulvertLayer = GetLayer(sCLName)
 Set pDemLayer = GetLayer(sDEMName)

 If iCopy = 1 Then
 'make copies of the datasets
 End If

 'set these datasets into the extension
 m_pExtension.RoadLayer = pRoadLayer
 m_pExtension.StreamLayer = pStreamLayer
 m_pExtension.CulvLayer = pCulvertLayer
 m_pExtension.DemLayer = pDemLayer

End Sub

Private Function GetLayer(sName As String) As IDataLayer
 Dim counter As Integer
 For counter = 0 To m_pDoc.FocusMap.LayerCount - 1
 If sName = m_pDoc.FocusMap.Layer(counter).Name Then
 Set GetLayer = m_pDoc.FocusMap.Layer(counter)
 Exit Function
 End If
 Next counter
End Function

CLASS – clsStop (clsStop.cls)

Option Explicit

Implements ICommand
Private m_pApp As IApplication
Private m_pExt As clsExt

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
 'TODO: your code here
End Property

Private Property Get ICommand_Caption() As String
 ICommand_Caption = "Stop"
End Property

Private Property Get ICommand_Category() As String
 ICommand_Category = "Road Sediment Analyst"
End Property

224

Private Property Get ICommand_Checked() As Boolean
 'TODO: your code here
End Property

Private Property Get ICommand_Enabled() As Boolean
 If Not m_pExt Is Nothing Then
 If m_pExt.IsStarted Then
 ICommand_Enabled = True
 Else: ICommand_Enabled = False
 End If
 Else: ICommand_Enabled = False
 End If
End Property

Private Property Get ICommand_HelpContextID() As Long
 'TODO: your code here
End Property

Private Property Get ICommand_HelpFile() As String
 'TODO: your code here
End Property

Private Property Get ICommand_Message() As String
 ICommand_Message = "Stop Cross Drain Analyst"
End Property

Private Property Get ICommand_Name() As String
 ICommand_Name = "Stop"
End Property

Private Sub ICommand_OnClick()
 m_pExt.IsStarted = False
 m_pExt.IsSetUp = False
 m_pExt.HasTopology = False
 m_pExt.IsAnalyzed = False
 m_pExt.RoadLayer = Nothing
 m_pExt.StreamLayer = Nothing
 m_pExt.CulvLayer = Nothing
 m_pExt.DemLayer = Nothing

 Dim pSedModel As ISedimentModel
 Set pSedModel = m_pApp.FindExtensionByName(m_pExt.SedModelName)
 pSedModel.StopSession

 m_pExt.TriggerStopEvent
End Sub

Private Sub ICommand_OnCreate(ByVal hook As Object)
 Set m_pApp = hook
 Dim pId As New UID
 pId.Value = "RoadSedimentAnalyst.clsExt"
 Set m_pExt = m_pApp.FindExtensionByCLSID(pId)
End Sub

Private Property Get ICommand_Tooltip() As String

End Property

225

CLASS – clsToolBar (clsToolBar.cls)

Option Explicit

Implements IToolBarDef

Private Property Get IToolBarDef_Caption() As String
 IToolBarDef_Caption = "Road Sediment Analyst"
End Property

Private Sub IToolBarDef_GetItemInfo(ByVal pos As Long, ByVal itemDef As
esriCore.IItemDef)
 Dim pUID As New UID
 itemDef.Group = False

 Select Case pos
 Case 0
 pUID.Value = "RoadSedimentAnalyst.clsMenu"
 Case 1
 itemDef.Group = True
 pUID.Value = "RoadSedimentAnalyst.clsCrtCulv"
 Case 2
 pUID.Value = "RoadSedimentAnalyst.clsMoveCulv"
 Case 3
 pUID.Value = "RoadSedimentAnalyst.clsRmvCulv"
 Case 4
 pUID.Value = "RoadSedimentAnalyst.clsSedBox"
 Case 5
 itemDef.Group = True
 pUID.Value = "RoadSedimentAnalyst.clsSegGrade"
 Case 6
 pUID.Value = "RoadSedimentAnalyst.clsNodeGrade"
 Case 7
 itemDef.Group = True
 pUID.Value = "RoadSedimentAnalyst.clsFlip"
 Case 8
 pUID.Value = "RoadSedimentAnalyst.clsSplit"
 Case 9
 pUID.Value = "RoadSedimentAnalyst.clsMerge"
 Case 10
 itemDef.Group = True
 pUID.Value = "RoadSedimentAnalyst.clsEnforCon"
 End Select

 itemDef.ID = pUID
End Sub

Private Property Get IToolBarDef_ItemCount() As Long
 IToolBarDef_ItemCount = 11
End Property

Private Property Get IToolBarDef_Name() As String
 IToolBarDef_Name = "Road Sediment Analyst Toolbar"
End Property

