Chapter 1. Basic Wood Properties

Moisture Content 2
Formulas 2
Moisture content on an oven-dry basis($\mathrm{MC}_{\mathrm{od}}$)Moisture content on a wet or originalbasis $\left(\mathrm{MC}_{\mathrm{W}}\right)$
Conversion Between $\mathrm{MC}_{\text {od }}$ and MC_{W} 2
Fiber Saturation Point (fsp), Shrinkage, and SwellingCalculating shrinkage (Sh) percentageCalculating swelling (Sw) percentage
Typical Moisture Contents of WoodEquilibrium moisture content (EMC)
Kiln-dried products
Air-dried products
Green products
Density and Specific Gravity 4
Density 4
Specific Gravity 5
Calculating the Weight of Wood Products 6
Basic Calculations 6
Simplifying the Calculations 7
Product Examples 7
Logs 7Cords 10Lumber10
Plywood 10

Veneer 10

Chapter 1. Basic Wood Properties

This chapter explains how moisture content, shrinkage, and specific gravity of wood are measured and gives procedures for estimating weight density in pounds per cubic foot or kilograms per cubic meter of solid wood. Examples using information in the remaining chapters illustrate methods for estimating weight for various products.

Moisture Content

Water is naturally present in all parts of a tree and permeates the wood structure. Water commonly makes up more than half the weight of a living tree, a fresh log, or wet chips. The term green refers to this initial condition. However, when a tree dies or is harvested, bucked into logs, or processed into products, wood moisture content adjusts toward equilibrium with the temperature and humidity of its surroundings. It eventually reaches an equilibrium at which it still retains some moisture. The only case when wood contains no moisture is when it is kept in an oven above $100^{\circ} \mathrm{C}$. In this environment all water is eliminated and the wood is referred to as oven dried. In contrast, kiln drying is designed to bring wood to a moisture content similar to the environment expected in service. As the environment changes, wood will take on or lose moisture as it adjusts to these new conditions. These adjustments may be accompanied by shrinkage or swelling.

To illustrate calculation of moisture content and other properties, consider a hypothetical piece of lumber 16 feet long with nominal thickness and width of 2 and 4 inches respectively. Assume that a researcher carefully measured its volume and weight when green, kiln-dry, and oven-dry, obtaining the following results:

Condition	Volume (ft3)	Weight (Ib)
Green	0.78	40.0
Kiln-dry	0.73	22.3
Oven-dry	0.68	19.4

Formulas

Wood moisture content may be expressed in either of two ways, hence it is important to know which is being used. Using the data above, the following formulas show how to find the percentage of moisture on an oven-dry basis (MCod) or on a wet or original basis $\left(\mathrm{MC}_{\mathrm{w}}\right)$.

$$
\begin{aligned}
& \text { Moisture Content on an Oven-dry Basis }\left(\mathbf{M C}_{\mathbf{o d}}\right) \\
& \begin{aligned}
\text { MCod } & =100 * \text { weight of water } / \text { oven-dry weight } \\
& =100 *(40.0-19.4) / 19.4=106 \% \text { green } \\
& =100 *(22.3-19.4) / 19.4=15 \% \quad \text { kiln-dry }
\end{aligned}
\end{aligned}
$$

MCod is commonly used in solid wood industries such as lumber and plywood. Note that on this basis, moisture content can exceed 100%.

Moisture Content on a Wet or Original Basis ($\mathbf{M C}_{\mathbf{w}}$)

$$
\begin{aligned}
\mathrm{MC}_{\mathrm{W}} & =100 * \text { weight of water/original weight } \\
& =100 *(40.0-19.4) / 40.0=52 \% \text { green } \\
& =100 *(22.3-19.4) / 22.3=13 \% \text { kiln-dry }
\end{aligned}
$$

$M C_{W}$ is commonly used in the pulp and paper and the wood energy industries. Note that on this basis, moisture content can never reach 100%.

Conversion Between $\mathrm{MC}_{\text {od }}$ and MC_{w}

$\mathrm{MC}_{\mathrm{od}}=100 * \mathrm{MC}_{\mathrm{W}} /\left(100-\mathrm{MC}_{\mathrm{W}}\right)$
$\mathrm{MCw}=100 * \operatorname{MCod} /(100+\mathrm{MCod})$

Fiber Saturation Point (fsp), Shrinkage, and Swelling

When wood dries below a certain moisture content, referred to as the fiber saturation point (fsp), it begins to shrink and continues to do so until it is oven-dry. Conversely, wood that is below fsp will swell as it takes on moisture and this will continue until fsp is reached. Changes in moisture content above fsp have no effect on shrinkage and swelling. Fsp varies among species, but a value of $30 \% \mathrm{MCod}_{\mathrm{od}}\left(23 \% \mathrm{MC}_{\mathrm{W}}\right)$ is commonly assumed.

Table 1-1. Moisture content, shrinkage, and specific gravity of some western species.

	$\begin{array}{\|l} \hline \text { Moisture content }\left(\mathrm{MC}_{\mathrm{od}}\right) \\ \text { of green wood (\%) } \end{array}$		Shrinkage ${ }^{\text {a }}$ (\%)			Specific gravity $\left(\mathrm{SG}_{\mathrm{g}}\right)^{\text {b }}$		
Species	Sap	Heart	T	R	V	Avg	Low	High
SOFTWOODS								
Cedar								
Alaska	166	32	6.0	2.8	9.2	0.42	0.34	0.50
Incense	213	40	5.2	3.3	7.7	0.35	0.28	0.42
Port Orford	98	50	6.9	4.6	10.1	0.39	0.31	0.47
Western redcedar	249	58	5.0	2.4	6.8	0.31	0.25	0.37
Douglas-fir (coast)	115	37	7.6	4.8	12.4	0.45	0.36	0.54
Fir								
Grand	136	91	7.5	3.4	11.0	0.35	0.28	0.42
Noble	115	34	8.3	4.3	12.4	0.37	0.30	0.44
Pacific silver	164	55	9.2	4.4	13.0	0.40	0.32	0.48
White	160	98	7.0	3.3	9.8	0.37	0.30	0.44
Hemlock, western	170	85	7.8	4.2	12.4	0.42	0.34	0.50
Larch, western	110	54	9.1	4.5	14.0	0.48	0.38	0.58
Pine								
Lodgepole	120	40	6.7	4.3	11.1	0.38	0.30	0.46
Ponderosa	148	40	6.2	3.9	9.7	0.38	0.30	0.46
Sugar	219	98	5.6	2.9	7.9	0.34	0.27	0.41
Western white	148	62	7.4	4.1	11.8	0.35	0.28	0.42
Redwood								
Old growth	210	86	4.4	2.6	6.8	0.38	0.30	0.46
Young growth	-	-	4.9	2.2	7.0	0.34	0.27	0.41
HARDWOODS								
Red alder	97	-	7.3	4.4	12.6	0.37	0.30	0.44
Oregon ash	-	-	8.1	4.1	13.5	0.50	0.40	0.60
Black cottonwood	-	-	8.6	3.6	12.4	0.31	0.25	0.37
Bigleaf maple	-	-	7.1	3.7	11.6	0.44	0.35	0.53

Source: USFS (1987).
${ }^{\text {a }}$ Shrinkage: $\mathrm{T}=$ tangential, $\mathrm{R}=$ radial, $\mathrm{V}=$ volumetric. (Longitudinal shrinkage of normal wood is very low and is usually ignored.)
${ }^{\text {b }}$ The specific gravity range is calculated assuming a coefficient of variation of 20%. Under this assumption 95% of the population should have a specific gravity within the calculated range.

Calculating Shrinkage (Sh) Percentage

$\mathrm{Sh}=100 *$ decrease in size $/$ original size.
Here the "size" could be length, width, thickness, or overall volume, hence the formula can be used to calculate longitudinal shrinkage (Shl), volumetric shrinkage (Shv), or shrinkage in other directions. Table 1-1 presents shrinkage data for several western species and illustrates the variability
between species and the differences due to grain direction in wood. In dealing with conversion factors, one is most often concerned with changes in volume, hence volumetric shrinkage values are of interest. Using the 2×4 data, total volumetric shrinkage (green to oven-dry) is

$$
\text { Shvt }=100 *(0.78-0.68) / 0.78=12.8 \% .
$$

4/ Chapter 1

Similarly, volumetric shrinkage green to kiln-dry (15% MCod) is

$$
\text { Shv15 }=100 *(0.78-0.73) / 0.78=6.4 \%
$$

In the absence of actual measurement data, shrinkage from green to any intermediate moisture content, x, can be calculated by interpolation. Using volumetric shrinkage as an example

$$
\operatorname{Shv} x=\operatorname{Shvt} *(\mathrm{fsp}-\operatorname{MCod}, x) / \mathrm{fsp} .
$$

Assuming fsp is $\mathrm{MC}_{\mathrm{od}}=30 \%$, the volumetric shinkage from green to kiln-dry $\left(\mathrm{MC}_{\mathrm{od}}, x=15\right)$ is

$$
\text { Shv15 }=12.8 *(30-15) / 30=6.4 \% .
$$

Calculating Swelling (Sw) Percentage

$$
\mathrm{Sw}=100 * \text { increase in size / original size. }
$$

Suppose a contractor placed the kiln-dried 2×4 outdoors for several weeks during a rainy period and that it has returned to the green size. The percentage of swelling is

$$
S w=100 *(0.78-0.73) / 0.73=6.8 \%
$$

This example illustrates that swelling and shrinkage percentages are not equal, since calculation of each is based on the starting dimension. Calculations for swelling in specific directions are similar.

Typical Moisture Contents of Wood

Equilibrium Moisture Content (EMC). Wood exposed to air with a constant temperature and relative humidity will eventually reach a constant moisture content called equilibrium moisture content (EMC). EMC normally reflects moisture content expressed on an oven-dry basis. EMC varies with both humidity and temperature, with the former dominating. Changes in humidity and temperature cause wood products to move toward a new EMC level. The values listed below indicate the range of EMC that various products will reach at a temperature of $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$ for relative humidities of 30 to 90% (Haygreen and Bowyer 1989).

	MCod (\%)
Wood (e.g., lumber)	$6.0-21.6$
Softwood plywood	$6.0-19.0$
Particleboard	$6.6-16.6$
Oil-treated hardboard	$4.0-10.8$
High pressure laminate	$3.0-9.1$

Kiln-Dried Products. Many wood products are dried during manufacture to a moisture content that approximates the EMC they will experience in their final use. This tends to minimize dimension changes due to shrinkage and swelling during use. By reducing weight, kiln drying may also reduce freight charges.

Air-Dried Products. The moisture content of airdried products in outdoor situations is variable because of the seasonal changes in the environment. However, a reasonable average would be approximately $20 \% \mathrm{MC}_{\text {od }}$.

Green Products. The moisture content of green or fresh wood as found in the living tree or logs is highly variable and depends on species, locale, season of the year, and heartwood and sapwood content of the wood. Table 1-1 presents green $\mathrm{MC}_{\mathrm{od}}$ for some western species and illustrates the variation that can be encountered. Some products, especially lumber, are often sold in the green condition with the expectation that they will air-dry sufficiently before use. If this does not occur, difficulties with excessive shrinkage may result.

Density and Specific Gravity

Density

Wood density is simply its weight per unit volume, hence this measure has units such as $\mathrm{lb} / \mathrm{ft}^{3}$. Synonyms sometimes used are weight density and bulk density. For these to be meaningful, the moisture content at which the weight and volume were measured must be indicated; in some cases weight and volume are at the same moisture content while in other cases they are at different moisture contents.

For example, the green weight of the 2×4 $(40.0 \mathrm{lb})$ can be divided by its green volume $\left(0.78 \mathrm{ft}^{3}\right)$, its kiln-dry volume $\left(0.73 \mathrm{ft}^{3}\right)$, or its ovendry volume $\left(0.68 \mathrm{ft}^{3}\right)$, resulting in densities of 51.3, 54.8 , and $58.8 \mathrm{lb} / \mathrm{ft}^{3}$, respectively. Example 1 lists these as the first row of values. The second row represents densities when the kiln-dry weight is divided by the three volume measures, and the bottom row represents densities when the oven-dry weight is used.

In Example 1, the density $51.3 \mathrm{lb} / \mathrm{ft}^{3}$ would be useful for predicting the weight of green $2 \times 4 \mathrm{~s}$ that must be handled by labor and machinery in the
sawmill. The density $34.9 \mathrm{lb} / \mathrm{ft}^{3}$ can be applied only to actual cubic lumber volumes measured after drying to 15% MCod; it would estimate the shipping weight of the dried lumber. The density $32.7 \mathrm{lb} / \mathrm{ft}^{3}$ could be used to predict the shipping
Figure 1-1. Effect of moisture content on density,

weight of kiln-dried $2 \times 4 \mathrm{~s}$ from the cubic volume measured when the lumber is in the green condition. Each of the remaining six density values has a particular interpretation and application. This example illustrates that merely stating the units of weight and volume (i.e., $\mathrm{lb} / \mathrm{ft}^{3}$) is ambiguous without further statement of the moisture content at which each of these measurements was taken. It should be obvious that there are an infinite number of weight densities and that weight density of wood varies continuously with moisture content, as shown by Figure 1-1. The kink in the curve is due to the effect of shrinkage on volume when moisture content is below fsp.

Specific Gravity

Specific gravity is the density of wood relative to the density of water, and for this reason the terms relative density and basic density are sometimes used. Specific gravity is used as a basis to standardize comparisons among species and products. To reduce confusion from varying moisture content, specific gravity of wood is based on oven-dry weight and volume measured at one of the following MCod conditions: 0% (oven-dry), 12\%, or green. These will be referred to in this book as SGod, SG12, and SGg. When referring to specific gravity, it is important to indicate which of these volume bases is used. SG12 is often reported in the literature, because $\mathrm{MCod}=12 \%$ is a standard moisture content at which many wood properties
are tested. SGg is commonly reported due to the relative ease of measurement.

Example 1

The volume and weight data presented for the 2×4 can be combined into nine densities $\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$:

Volume basis			
Weight basis	Green	$\begin{gathered} \text { Kiln-dry } \\ \text { (MCod }=15 \%) \end{gathered}$	Oven dry
Green	51.3	54.8	58.8
Kiln-dry $\left(M C_{o d}=15 \%\right)$	32.7	34.9	37.5
Oven-dry	24.9	26.6	28.5

Example 2

Continuing the 2×4 example, and noting that water weighs $62.4 \mathrm{lb} / \mathrm{ft}^{3}$:

$$
\begin{aligned}
& \mathrm{SG}_{\mathrm{g}}=24.9 \mathrm{lb} / \mathrm{ft}^{3} / 62.4 \mathrm{lb} / \mathrm{ft}^{3}=0.40 \\
& \mathrm{SG}_{\mathrm{od}}=28.5 \mathrm{lb} / \mathrm{ft}^{3} / 62.4 \mathrm{lb} / \mathrm{ft}^{3}=0.46
\end{aligned}
$$

Example 3

Calculate SG_{15} for the 2×4. Previously, it was found that Shv15 $=6.4 \%$. Therefore

$$
\mathrm{SG}_{15}=0.40 /(1-6.4 / 100)=0.427 \sim 0.43
$$

This value could also be calculated directly using the density from Example 1. The correct density to use is that with an oven-dry weight and volume taken when kiln-dry. Thus

$$
\mathrm{SG}_{15}=26.6 / 62.4=0.426 \sim 0.43
$$

The slight difference is due to rounding.

Note in Example 2 that the units of measure cancel, so specific gravity is unitless. Also, note that specific gravity for this wood has risen from 0.40 to 0.46 as the volume basis changed from green to oven-dry. This is due to the effect of volumetric shrinkage below fsp. Above fsp, volume does not change; so specific gravity is the constant green basis value. Figure 1-2 plots specific gravity against MCod. The kink corresponds to the onset of volumetric shrinkage below fsp. Table 1-1 presents the average and range of SGg for some western species.

6 Chapter 1

Figure 1-2. Effect of moisture content on specific gravity, $S G_{g}=0.40$.

Frequently, data on specific gravity at a particular moisture content basis may not be available. The following formula can be used to estimate SG at $\mathrm{MCod}_{\mathrm{od}}=x$:

$$
\mathrm{SG}_{x}=\mathrm{SGg} /\left(1-\mathrm{Shv}_{x} / 100\right) \quad 0^{2} x^{2} \mathrm{fsp}
$$

See Example 3.

Calculating the Weight of Wood Products

The most accurate method for estimating weight is to weigh representative samples. In cases involving transportation, shippers often have weight tables that should be used. In situations where sampling is not possible and shipping tables are not available, the methods in this section can be used. The reader should be aware that wood is variable and an estimate based on published averages for a species may differ substantially from reality. For example, the author was involved in a request to estimate the weight of a large redcedar log. Since the dimensions were carefully measured, the estimate of cubic volume was regarded as reasonably accurate. But there was no information on the specific gravity or moisture content of this log. The estimated weight, based on redcedar averages shown in Table 1-1, was about one-third the actual weight later obtained on a truck scale. The \log had either a higher average specific gravity, higher moisture content, or both.

Example 4

A debarked log contains $44 \mathrm{ft}^{3}$ of wood and it is desired to determine the load it will place on a conveyor. Assuming the SGg of the species involved is 0.40 and that the log has an MCod of 60%, its weight is

$$
44 \mathrm{ft}^{3} * 0.40 * 62.4 \mathrm{lb} / \mathrm{ft}^{3} *(1+60 / 100)=1,757 \mathrm{lb} .
$$

Since the log is in the green condition and specific gravity is on a green volume basis, the units are consistent.

Example 5

Suppose instead that a pulp mill wished to estimate the weight of oven-dry fiber contained in the log of Example 4.

$$
44 \mathrm{ft}^{3} * 0.40 * 62.4 \mathrm{lb} / \mathrm{ft}^{3} *(1+0 / 100)=1,098 \mathrm{lb} .
$$

As in Example 4, the log volume is green, hence specific gravity on a green volume basis should be used.

Example 6

Suppose the log in the previous examples is processed into $2 \times 4 \mathrm{~s}$ as discussed earlier and that the recovery of dry ($15 \% \mathrm{MC}_{\mathrm{od}}$) $2 \times 4 \mathrm{~s}$ is 45% of the cubic volume of the log. Thus there is a stack of dried $2 \times 4 \mathrm{~s}$ which, if measured precisely, contain $0.45 * 44=19.8 \mathrm{ft}^{3}$. Referring to the weight calculation formula, the moisture content is known to be 15%. The specific gravity information available is $S G g=0.40$ and $S G_{\text {od }}=0.46$. However, what is needed is the specific gravity based on volume measured at 15% MCod, which was found to be 0.43 in Example 3.The weight of the kiln-dry 2×4 s from this log is

$$
19.8 \mathrm{ft}^{3} * 0.43 * 62.4 *(1+15 / 100)=611 \mathrm{lb} .
$$

Basic Calculations

Assuming the moisture content and specific gravity are known, the weight of wood is calculated as follows:

$$
\begin{aligned}
& \text { Weight }=(\text { volume }) *(\text { specific gravity }) * \\
& \left(\text { density of } \mathrm{H}_{2} 0\right) *(1+\mathrm{MCod} / 100)
\end{aligned}
$$

where "volume" is in cubic feet or cubic meters and the density of water is $62.4 \mathrm{lb} / \mathrm{ft}^{3}$ or $1,000 \mathrm{~kg} / \mathrm{m}^{3}$. The specific gravity basis should correspond to the moisture content of the volume involved.

SGg is used in both Examples 4 and 5, but in Example 4 the last term includes the weight of water expected in a green log while the weight of water is excluded in Example 5. Remember that specific gravity was defined as always based on density expressed as oven-dry weight per unit volume.

Simplifying the Calculations

Figure 1-3 is the same as Figure 1-2 except there are lines for a range of SGg and the horizontal

Figure 1-3. Relation of specific gravity and moisture content. Source: USFS (1987).

portion beyond fsp ($30 \% \mathrm{MCod}$) has been eliminated. Figure 1-3 provides a simple way to convert

SGg to another basis. For example, to estimate SG15 for a species with $\mathrm{SGg}=0.40$, find $15 \% \mathrm{MCod}$ on the bottom axis, move vertically to the curve for $\mathrm{SGg}=$ 0.40 , and read approximately 0.43 from the left axis. A species having SGg $=0.55$ has SG12 $=0.605$, as shown by the bold arrows. A species with $\mathrm{SGg}=$ 0.40 has $\mathrm{SG}_{\text {od }}=0.45$. This graph assumes an average volumetric shrinkage of North American species and that $\mathrm{fsp}=30 \% \mathrm{MC}_{\mathrm{od}}$. While only approximate, it should be sufficient for most applications.

Table 1-2 summarizes calculations to estimate weight density in $\mathrm{lb} / \mathrm{ft}^{3}$ for combinations of specific gravity and MCod. If it is desired to convert table weights from $\mathrm{lb} / \mathrm{ft}^{3}$ to $\mathrm{kg} / \mathrm{m}^{3}$, multiply the table value by 16.0185 (Appendix 1).

Product Examples

Logs

1. Estimate the weight per MBF Scribner of the sample logs in Table 2-6.

Assumptions (Douglas-fir):

$$
\begin{array}{llr}
\mathrm{SGg} & = & 0.45 \\
\mathrm{MC}_{\mathrm{od}} & = & 100 \%
\end{array}
$$

Density (Table 1-2): $56.2 \mathrm{lb} / \mathrm{ft}^{3}$ by interpolation
Log scale ratio (Table 2-6):
$4.30 \mathrm{BF} / \mathrm{ft}^{3}$ West-side
$5.93 \mathrm{BF} / \mathrm{ft}^{3}$ East-side

Weight/MBF West-side Scribner:

$\left(56.2 \mathrm{lb} / \mathrm{ft}^{3}\right) /\left(4.30 \mathrm{BF} / \mathrm{ft}^{3}\right) * 1,000 \mathrm{BF} / \mathrm{MBF}=$ $13,070 \mathrm{lb} / \mathrm{MBF}$.

Weight/MBF East-side Scribner:

$\left(56.2 \mathrm{lb} / \mathrm{ft}^{3}\right) /\left(5.93 \mathrm{BF} / \mathrm{ft}^{3}\right) * 1,000 \mathrm{BF} / \mathrm{MBF}=$ 9,477 lb/MBF.
2. To estimate the weight of oven-dry fiber/MBF, substitute a density of 28.1 oven-dry lb/green ft^{3}. This value is obtained at the intersection of SG $=$ 0.45 and $\mathrm{MC}_{\text {od }}=0$ in Table 1-2.

$\stackrel{\rightharpoonup}{\text { g }} \stackrel{\rightharpoonup}{\mathrm{b}} \stackrel{\rightharpoonup}{\mathrm{o}} \stackrel{\rightharpoonup}{\mathrm{O}} \stackrel{\rightharpoonup}{\circ}$	¢ ¢ ¢ ¢ ¢ ¢ ¢			$\omega{ }_{\omega}^{\omega} \underset{\sim}{\omega} \times \sim N$	$\vec{\omega} \vec{N} \infty \pm 0$	
		$\stackrel{\omega}{N} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega}$ ¢		NNANN N N N	$\underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{N} \stackrel{\rightharpoonup}{\circ} \stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{\dot{\circ}}$
$\underset{\omega}{\Leftrightarrow} \triangleq \underset{\omega}{A} \underset{\omega}{A} \underset{\omega}{A} \underset{\omega}{\omega}$	$\begin{array}{llll} \omega & \omega & \omega & \omega \\ \underset{\sim}{\omega} & \underset{\sim}{\omega} \\ \omega & 0 \end{array}$	$\stackrel{H}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega}$	ω ω N N N \sim 0 ∞ \sim \sim ∞ 0	NNNNN N $A \infty \infty$	$\underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{N} \underset{0}{N}$	$\underset{\sim}{\underset{\sim}{\omega}}$
		$\underset{\sim}{\omega} \omega \underset{\sim}{\omega} \omega \underset{\omega}{\omega}$ ω in on io	$\stackrel{\omega}{\omega} \stackrel{\omega}{\sim} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega}$		$\underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{N} \xrightarrow{N}$	¢
		$\begin{array}{lllll} \omega & \omega & \omega & \omega & \omega \\ \Leftrightarrow & \omega & \omega \\ \Leftrightarrow & \omega & H_{1} \\ \hline \end{array}$		$\begin{array}{lllll} \omega & N & N & N & N \\ - & \infty & \infty & \sim \\ 0 & -1 & \infty & \infty & \ddots \end{array}$	$\begin{array}{llll} N & N & N \\ M & N \\ O & N \\ \hline \end{array}$	O
			$\underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega}$	$\underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{N}$	N N N M N N N N	－
	$\underset{c}{A} \underset{c}{A} \underset{c}{A} \underset{c}{A} \underset{i}{A}$		$\begin{array}{lllll} \omega & \omega & \omega & \omega & \omega \\ \omega & \sim & \omega \\ \omega & \omega & \omega & \omega & \omega \end{array}$	$\underset{\omega}{\omega} \underset{\omega}{\omega} \underset{\omega}{\omega} \underset{\stackrel{\omega}{\circ}}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega}$	$\begin{array}{ccccc} N & N & N & N & N \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 \end{array}$	－
		$\stackrel{\leftrightarrow}{\rightarrow} \underset{\sim}{\oplus} \underset{\sim}{A} \underset{0}{A} \underset{0}{A}$	$\begin{array}{llll} \stackrel{\omega}{l} & \omega & \omega & \omega \\ \omega & \infty & \omega \\ \infty & \infty & \sim & \sim \end{array}$	$\omega \underset{\omega}{\omega} \omega \underset{\sim}{\omega} \underset{\sim}{\omega}$ © © in ir A	$\begin{array}{lllll} \omega & N & N & N & N \\ 0 & \infty & 0 & \sim \\ A & \omega & N \\ A & N \end{array}$	－
		事 点 台 忍 ω in $-\infty$		$\begin{array}{llll} \omega & \omega \\ \omega & \omega \\ \omega & \omega \\ \underset{\sim}{\omega} & \underset{\sim}{\omega} \end{array}$		$\underset{f}{\circ}$
			$A \text { A A A A }$ ∞ 门 $\omega_{1} \omega$ N	$\begin{array}{llll} \omega & \omega & \omega & \omega \\ 0 & \omega \\ 0 & \omega & \omega \\ \hline \end{array}$	$\underset{\omega}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{N}$	耎
	Grar		\＆	A $\omega_{0} \omega \sim \omega$	$\omega \underset{\omega}{\omega} \stackrel{\omega}{\omega} \omega$	－

3. Estimate the weight of a cunit of the sample logs in Table 2-6.

From parts 1 and 2 above, a cubic foot weighs 56.2 lb green and 28.1 lb oven-dry. Multiplying these values by $100 \mathrm{ft}^{3}$ / cunit yields $5,620 \mathrm{lb}$ green and $2,810 \mathrm{lb}$ oven-dry.
4. Gross versus net scale effect. When estimating log weights, the difference between gross and net scale can be important. For example, suppose a log truck is found to have a load that weighs $100,000 \mathrm{lb}$ and the gross and net scales are found to be 8,000 and $6,000 \mathrm{BF}$ respectively. Division shows that the weight densities are 12,500 $\mathrm{lb} / \mathrm{MBF}$ gross scale and $16,667 \mathrm{lb} / \mathrm{MBF}$ net scale.

Cords

1. Estimate the weight of a cord of freshly cut and stacked red alder. From Table 1-1 alder has $\mathrm{SGg}=$ 0.37 and $\mathrm{MC}_{\text {od }}=97$. Using interpolation, Table 12 yields a density of $46.1 \mathrm{lb} / \mathrm{ft}^{3}$. Assuming that a cord contains $85 \mathrm{ft}^{3}$ solid wood, it weighs $85 * 46.1=3,918 \mathrm{lb}$.
2. Suppose this cord has been allowed to air dry (MCod approximately 20\%). Use Table 1-2 to find that the density is $27.7 \mathrm{lb} / \mathrm{ft}^{3}$, hence the cord weighs $85 * 27.7=2,354 \mathrm{lb}$.
3. A pulp mill wants to buy this cord but is willing to pay only for the oven-dry wood fiber (i.e., $\mathrm{MC}_{\mathrm{od}}=0 \%$). Use Table 1-2 to find that the density is $23.1 \mathrm{lb} / \mathrm{ft}^{3}$, hence the dry fiber in the cord weighs $85 * 23.1=1,964 \mathrm{lb}$.

Thus a truck driving across a scale would show that the fresh cord weighs almost 2 tons while the pulp mill wants to pay only for the wood fiber it contains (about 1 ton). This is why weight scaling factors are developed by pulp mills.

Lumber

Estimate the weight of 1,000 BF of Douglas-fir S-Dry $2 \times 4 \mathrm{~s}$.
Assumptions: $\mathrm{SGg}=0.45, \mathrm{MCod}=15 \%$.
Figure 1-3, $\mathrm{SGg}=0.45$ translates to $\mathrm{SG} 15=0.48$.

Table 1-2 has a weight density (interpolated) of 34.4 $\mathrm{lb} / \mathrm{ft}^{3}$ at the intersection of $15 \% \mathrm{MC}$ and $\mathrm{SG}=0.48$.

Table 4-6 shows that the BFFR for S-Dry $2 x 4$ s is 18.29 BF/ ft^{3}.

The cubic feet represented by 1,000 BF of S-Dry $2 x 4 \mathrm{~s}$ is obtained by dividing 1,000 by the BFFR, hence

$$
1,000 / 18.29=54.67 \mathrm{ft}^{3} \text { of S-Dry } 2 \mathrm{x} 4 \mathrm{~s}
$$

Therefore, the weight of $1,000 \mathrm{BF}$ is

$$
54.67 \mathrm{ft}^{3} * 34.4 \mathrm{lb} / \mathrm{ft}^{3}=1,880 \mathrm{lb}
$$

Plywood

Estimate the weight of 1,500 square feet of $1 / 2$ inch Douglas-fir plywood.

Assumptions: $\mathrm{SGg}=0.45, \mathrm{MCod}=8 \%$.
Figure 1-3 translates $\mathrm{SGg}=0.45$ to $\mathrm{SG} 8=0.49$.
Table 1-2 has a weight density (interpolated) of 33.0 $\mathrm{lb} / \mathrm{ft}^{3}$ at the intersection of $8 \% \mathrm{MC}$ and $\mathrm{SG}=0.49$.

Using the procedures in Chapter 5, 1,500 square feet of $1 / 2$ inch plywood is equivalent to $62.5 \mathrm{ft}^{3}$.

Therefore, the weight is

$$
33.0 \mathrm{lb} / \mathrm{ft}^{3} * 62.5 \mathrm{ft}^{3}=2,062 \mathrm{lb}
$$

The actual weight could be somewhat higher due to the additional weight of resin in the gluelines.

Veneer

Estimate the weight of nominal 1,000 square feet of $1 / 10$ inch Douglas-fir green veneer.

Assumptions: $\mathrm{SGg}=0.45, \mathrm{MC}_{\mathrm{od}}=80 \%$.
Since this is green veneer above fiber saturation point, no specific gravity translation is needed.

Table 1-2 has a weight density (interpolated) of $50.55 \mathrm{lb} / \mathrm{ft}^{3}$ at the intersection of $80 \% \mathrm{MC}$ and $\mathrm{SG}=$ 0.45 .

Using the procedures in Chapter 5, the volume in cubic feet is

$$
0.08333 * 1,000 * 1 / 10=8.33 \mathrm{ft}^{3}
$$

Since veneer volumes are normally stated on the basis of nominal sheet sizes, increase by 12%
(Chapter 5) to get the total quantity of wood as $9.33 \mathrm{ft}^{3}$.

The weight is
$50.55 \mathrm{lb} / \mathrm{ft}^{3} * 9.33 \mathrm{ft}^{3}=472 \mathrm{lb}$.

Insert blank page here

